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ELEMENTARY FOREST SAMPLING 

This is a statistical cookbook for foresters. It presents some 
sampling methods that have been found useful in forestry. No 
attempt is made to go into the theory behind these methods. This 
has some dangers, but experience has shown that few foresters 
will venture into the intricacies of statistical theory until they 
are familiar with some of the common sampling designs and 
computations. 

The aim here is to provide that familiarity. Readers who attain 
such familiarity will be able to handle many of the routine sam- 
pling problems. They will also find that many problems have been 
left unanswered and many ramifications of sampling ignored. It 
is hoped that when they reach this stage they will delve into more 
comprehensive works on sampling. Several very good ones are 
listed on page 78. 

BASIC CONCEPTS 

Why Sample? 
Most human decisions are made with incomplete knowledge. In 

daily life, a physician may diagnose disease from a single drop of 
blood or a microscopic section of tissue; a housewife judges a 
watermelon by its "plug" or by the sound it emits when thumped ; 
and amid a bewildering array of choices and claims we select 
toothpaste, insurance, vacation spots, mates, and careers with but 
a fragment of the total information necessary or desirable for 
complete understanding. All of these we do with the ardent hope 
that the drop of blood, the melon plug, and the advertising claim 
give a reliable picture of the population they represent. 

In manufacturing and business, in science, and no less in fores- 
try, partial knowledge is a normal state. The complete census is 
rare—^the sample is commonplace. A ranger must advertise timber 
sales with estimated volume, estimated grade yield and value, esti- 
mated cost, and estimated risk. The nurseryman sows seed whose 
germination is estimated from a tiny fraction of the seedlot, and 
at harvest he estimates the seedling crop with sample counts in 
the nursery beds. Enterprising pulp companies, seeking a source 
of raw material in sawmill residue, may estimate the potential 
tonnage of chippable material by multiplying reported production 
by a set of conversion factors obtained at a few representative 
sawmills. 

However desirable a complete measurement may seem, there are 
several good reasons why sampling is often preferred. In the first 
place, complete measurement or enumeration may be impossible. 
The nurseryman might b^ somewhat better informed if he knew 
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the germinative capacity of all the seed to be sown, but the de- 
structive nature of the germination test precludes testing every 
seed. For identical reasons, it is impossible to measure the bend- 
ing strength of all the timbers to be used in a bridge, the tearing 
strength of all the paper to be put into a book, or the grade of 
all the boards to be produced in a timber sale. If the tests were 
permitted, no seedlings would be produced, no bridges would be 
built, no books printed, and no stumpage sold. Clearly where test- 
ing is destructive, some sort of sampling is inescapable. 

In other instances total measurement or count is not feasible. 
Consider the staggering task of testing the quality of all the water 
in a reservoir, weighing all the fish in a stream, counting all the 
seedlings in a 500-bed nursery, enumerating all the egg masses in 
a turpentine beetle infestation, measuring diameter and height of 
all the merchantable trees in a 10,000-acre forest. Obviously, the 
enormity of the task would demand some sort of sampling 
procedure. 

It is well known that sampling will frequently provide the essen- 
tial information at a far lower cost than a complete enumeration. 
Less well known is the fact that this information may at times be 
more reliable than that obtained by a 100-percent inventory. There 
are several reasons why this might be true. With fewer observa- 
tions to be made and more time available, measurement of the 
units in the sample can be and is more likely to be made with greater 
care. In addition, a portion of the saving resulting from sampling 
could be used to buy better instruments and to employ or train 
higher caliber personnel. It is not hard to see that good measure- 
ments on 5 percent of the units in a population could provide more 
reliable information than sloppy measurements on 100 percent 
of the units. 

Finally, since sample data can be collected and processed in a 
fraction of the time required for a complete inventory, the infor- 
mation obtained may be more timely. Surveying 100 percent of 
the lumber market is not going to provide information that is very 
useful to a seller if it takes 10 months to complete the job. 

Populations, Parameters, and Estimates 
The central notion in any sampling problem is the existence of 

a population. It is helpful to think of a population as an aggregate 
of unit values, where the "unit" is the thing upon which the obser- 
vation is made, and the "value" is the property observed on that 
thing. For example, we may imagine a square 40-acre tract of 
timber in which the unit being observed is the individual tree and 
the value being observed is tree height. The population is the 
aggregate of all heights of trees on the specified forty. The diam- 
eters of these same trees would be another population. The cubic 
volumes in some particular portion of the stems constitute still 
another population. 

Alternatively, the units might be defined as the 400 1-chain- 
square plots into which the tract could be divided. The cubic 
volumes of trees on these plots might form one population. The 
board-foot volumes of the same trees would be another populj^- 
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tion. The number of earthworms in the top 6 inches of soil on 
these plots could be still a third population. 

Whenever possible, matters will be simplified if the units in 
which the population is defined are the same as those to be selected 
in the sample. If we wish to estimate the total weight of earth- 
worms in the top 6 inches of soil for some area, it would be best 
to think of a population made up of blocks of soil of some specified 
dimension with the weight of earthworms in the block being the 
unit value. Such units are easily selected for inclusion in the 
sample, and projection of sample data to the entire population is 
relatively simple. If we think of individual earthworms as the 
units, selection of the sample and expansion from the sample to 
the population may both be very difficult. 

To characterize the population as a whole, we often use certain 
constants that are called parameters. The mean value per plot in 
a population of quarter-acre plots is a parameter. The proportion 
of living seedlings in a pine plantation is a parameter. The total 
number of units in the population is a parameter, and so is the 
variability among the unit values. 

The objective of sample surveys is usually to estimate some 
parameter or a function of some parameter or parameters. Often, 
but not always, we wish to estimate the population mean or total. 
The value of the parameter as estimated from a sample will here- 
after be referred to as the sample estimate or simply the estimate. 

Bias, Accuracy, and Precision 
In seeking an estimate of some population trait, the sampler's 

fondest hope is that at a reasonable cost he will obtain an estimate 
that is accurate (i.e., close to the true value). Without any help 
from sampling theory he knows that if bias rears its insidious 
head, accuracy will ñee the scene. And he has a suspicion that 
even though bias is eliminated, his sample estimate may still not 
be entirely precise. When only a part of the population is meas- 
ured, some estimates may be high, some low, some fairly close, 
and unfortunately, some rather far from the true value. 

Though most people have a general notion as to the meaning of 
bias, accuracy, and precision, it might be well at this stage to state 
the statistical interpretation of these terms. 

Bias.—Bias is a systematic distortion. It may be due to some 
flaw in measurement, to the method of selecting the sample, or to 
the technique of estimating the parameter. If, for example, seed- 
ling heights are measured with a ruler from which the first half- 
inch has been removed, all measurements will be one-half inch too 
large and the estimate of mean seedling height will be biased. In 
studies involving plant counts, some observers will nearly always 
include a plant that is on the plot boundary; others will consist- 
ently exclude it. Both routines are sources of measurement bias. In 
timber cruising, the volume table selected or the manner in which 
it is used may result in bias. A table made up from tall timber will 
give biased results when used without adjustment on short-bodied 
trees. Similarly, if the cruiser consistently estimates merchantable 
height above or below the specifications of the table, volume so 
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estimated will be biased. The only practical way to minimize 
measurement bias is by continual check of instrumentation, and 
meticulous training and care in the use of instruments. 

Bias due to method of sampling may arise when certain units 
are given a greater or lesser representation in the sample than in 
the population. As an elementary example, assume that we are es- 
timating the survival of 10,000 trees planted in 100 rows of 100 
trees each. If the sample were selected only from the interior 
98 X 98 block of trees in the interest of obtaining a "more repre- 
sentative" picture of survival, bias would occur simply because 
the border trees had no opportunity to appear in the sample. 

The technique of estimating the parameter after the sample 
has been taken is also a possible source of bias. If, for example, 
the survival on a planting job is estimated by taking a simple 
arithmetic average of the survival estimates from two fields, the 
resulting average may be seriously biased if one field is 500 acres 
and the other 10 acres in size. A better overall estimate would be 
obtained by weighting the estimates for the two fields in propor- 
tion to the field sizes. Another example of this type of bias occurs 
in the common forestry practice of estimating average diameter 
from the diameter of the tree of mean basal area. The latter pro- 
cedure actually gives the square root of the mean squared diam- 
eter, which is not the same as the arithmetic mean diameter unless 
all trees are exactly the same size. 

Bias is seldom desirable, but it is not a cause for panic. It is 
something a sampler may have to live with. Its complete elimina- 
tion may be costly in dollars, precision, or both. The important 
thing is to recognize the possible sources of bias and to weigh the 
effects against the cost of reducing or eliminating it. Some of the 
procedures discussed in this handbook are known to be slightly 
biased. They are used because the bias is often trivial and because 
they may be more precise than the unbiased procedures. 

Precision and accuracy.—A badly biased estimate may be pre- 
cise but it can never be accurate. Those who find this hard to 
swallow may be thinking of precision as being synonymous with 
accuracy- Statisticians being what they are, it will do little good 
to point out that several lexicographers seem to think the same 
way. Among statisticians accuracy refers to the success of esti- 
mating the true value of a quantity; precision refers to the cluster- 
ing of sample values about their ovm average, which, if biased, 
cannot be the true value. Accuracy, or closeness to the true value, 
may be absent because of bias, lack of precision, or both. 

. ^, ^^rget shooter who puts all of his shots in a quarter-inch 
circle m the 10-ring might be considered accurate; his friend who 
puts all of his shots in a quarter-inch circle at 12 o'clock in the 
b-ring would be considered equally precise but nowhere near as 
accurate. An example for foresters might be a series of careful 
measurements made of a single tree with a vernier caUper, one 
arm of which is not at right angles to the graduated beam. 
tJecause the measurements have been carefully made they should 
not vary a great deal but should cluster closely about their mean 
value : they will be precise. However, as the caliper is not properly 
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adjusted the measured values will be off the true value (bias) and 
the diameter estimate will be inaccurate. If the caliper is properly 
adjusted but is used carelessly the measurements may be unbiased 
but they will be neither accurate nor precise. 

Variables, Continuous and Discrete 
Variation is one of the facts of life. It is difficult to say whether 

this is good or bad, but we can say that without it there would be 
no sampling problems (or statisticians). How to cope with some 
of the samp¡ling problems created by natural variation is the 
subject of this handbook. 

To understand statisticians it is helpful to know their language, 
and in this language the term variable plays an active part. A 
characteristic that may vary from unit to unit is called a variable. 
In a population of trees, tree height is a variable, so are tree diam- 
eter, number of cones, cubic volume, and form class. As some trees 
may be loblolly pine, some slash pine, and some dawn redwoods, 
species is also a variable. Presence or absence of insects, the color 
of the foliage, and the fact that the tree is alive or dead are vari- 
ables also. 

A variable that is characterized by being related to some nu- 
merical scale of measurement, any interval of which may, if de- 
sired, be subdivided into an infinite number of values, is said to 
be continuous. Length, height, weight, temperature, and volume 
are examples of variables that can usually be labeled continuous. 
Qualitative variables and those that are represented by integral 
values or ratios of integral values are said to be discrete. Two 
forms of discrete data may be recognized : attributes and counts. 
In the first of these the individual is classified as having or not 
having some attribute ; or, more commonly, a group of individuals 
is described by the proportion or percentage having a particular 
attribute. Some familiar examples are the proportion of slash pine 
seedlings infected by rust, the percentage of stocked milacre quad- 
rats, and the survival percentage of planted seedlings. In the 
second form, the individual is described by a count that cannot 
be expressed as a proportion. Number of seedlings on a milacre, 
number of weevils in a cone, number of sprouts on a stump, and 
number of female ñowers on a tree are common examples. 

A distinction is made between continuous and discrete variables 
because the two types of data may require different statistical 
procedures. Most of the sampling methods and computational pro- 
cedures described in this handbook were developed primarily for 
use with continuous variables. The procedures that have been de- 
vised for discrete variables are generally more complex. By in- 
creasing the number of values that a discrete variable can assume, 
however, it is often possible to handle such data by the continuous- 
variable methods. Thus, germination percentages based on 200 or 
more seeds per dish can usually be treated by the same procedures 
that would be used for measurement data. The section that begins 
on page 61 describes simple random sampling with classification 
data and gives some illustrations of how the sampling procedures 
for continuous data may be used for classification and count data. 
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Distribution Functions 
A distribution function shows, for a population, the relative fre- 

quency with which different values of a variable occur. Knowing 
the distribution function, we can say what proportion of the indi- 
viduals are within certain size limits. 

Each population has its own distinct distribution function. 
There are, however, certain general types of function that occur 
quite frequently. The most common are the normal, binomial, and 
Poisson. The bell-shaped normal distribution, familiar to most 
foresters, is often encountered in dealing with continuous vari- 
ables. The binomial is associated with data where a fixed number 
of individuals are observed on each unit and the unit is charac- 
terized by the number of individuals having some particular at- 
tribute. The Poisson distribution may arise where individual units 
are characterized by a count having no fixed upper limit, particu- 
larly if zero or very low counts tend to predominate. 

The form of the distribution function dictates the appropriate 
statistical treatment of a set of data. The exact form of the dis- 
tribution will seldom be known, but some indications may be ob- 
tained from the sample data or from a general familiarity with 
the population. The methods of dealing with normally distributed 
data are simpler than most of the methods that have been de- 
veloped for other distributions. 

Fortunately, it has been shown that, regardless of the distribu- 
tion which a variable follows, the means of large samples tend to 
follow a distribution that approaches the normal and may be 
treated by normal distribution methods. 

TOOLS OF THE TRADE 

Subscripts, Summations, and Braci^ets 
In describing the various sampling methods, frequent use will 

be made of subscripts, brackets, and summation symbols. Some 
beginning samplers will be unhappy about this; others will be 
downright mad. The purpose though, is not to impress or confuse 
the reader. These devices are, like the more familiar notations 
of +» — > and =, merely a concise way of expressing ideas that 
would be ponderous if put into conventional language. And like 
the common algebraic symbols, using and understanding them is 
just a matter of practice. 

Subscripts.—The appearance of an Xi, Zjj,, or yumn brings a frown 
of annoyance and confusion to the face of many a forester. Yet 
interpreting this notation is quite simple. In Xi, the subscript i 
means that x can take on different forms or values. Putting in a 
particular value of i tells which form or value of x we are con- 
cerned with. The i might imply a particular characteristic of an 
individual. The term Xi might be the height of the individual, Xo 
might be his weight, Xs his age, and so forth. Or the subscript 
might imply a particular individual. In this case, Xi could be the 
height of the first individual, x^ the height of the second, Xs the 
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height of the third individual, and so forth. Which meaning is in- 
tended will usually be clear from the context. 

A variable (say x) will often be identified in more than one 
way. Thus, we might want to refer to the age of the second indi- 
vidual or the height of the first individual. This dual classification 
is accomplished with two subscripts. In Xij^ the i might identify 
the characteristic (for height, i = 1; for weight, i = 2; smà for 
age, i = S). The k could be used to designate which individual we 
are dealing with. Then, 0^2.7 would tell us that we are dealing with 
the weight (i = 2) of the seventh {k = 7) individual. This proc- 
ess can be carried to any length needed. If the individuals in the 
above example were from different groups we could use another 
subscript (say j) to identify the group. The symbol x^jj^ would 
indicate the i^^ characteristic of the k^^ individual of the j'^ group. 

Summations.—To indicate that several (say 6) values of a vari- 
able (Xi) are to be added together we could write 

(^1 -\-X2-\- Xs -}- Xi -\-X5 -\- XQ) 

A slightly shorter way of saying the same thing is 

(Xi-\-X2-\- ... + Xe) 

The three dots (...)  indicate that we continue to do the same 
thing for all the values from X3 through XQ as we have already 
done to Xi and X2. 

The same operation can be expressed more compactly by 

6 

In words this tells us to sum all values of Xi, letting i go from 1 
up to 6. The symbol X, which is the Greek letter sigma, indicates 
that a summation should be performed. The x tells what is to be 
summed and the letter above and below X indicates the limits over 
which the subscript i will be allowed to vary. 

If all of the values in a series are to be summed, the range of 
summation is frequently omitted from the summation sign giving 

'^Xi, ^Xi, or sometimes, "^x 
« 

All of these imply that we would sum all values of Xi. 
The same principle extends to variables that are identified by 

two or more subscripts. A separate summation sign may be used 
for each subscript. Thus, we might have 

8      4 

i=l j—1 

This would tell us to add up all the values of Xij having j from 
1 to 4 and i from 1 to 3. Written the long way, this means 

(Xi,i + iCi,2 + Xi,3 + ^1.4 + i^2,i + ^2.2 
+ i»2,3 + X2,4 + X3,l 4- ^3,2 + %,3 +  ^3,4) 
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As for a single subscript, when all values in a series are to be 
summed, the range of summation may be omitted, and sometimes 
a single summation symbol suffices. The above summation might 
be symbolized by 

S S Xijf S Xij, S S Xiv S i'^íjf or maybe even S x 
i       3 i.3 

If a numerical value is substituted for one of the letters in the 
subscript, the summation is to be performed by letting the letter 
subscript vary but holding the other subscript at the specified 
value. As an example. 

and. 

S Xsj = {X3,i -I- ir3,2 + Xs^s + 0:3,4) 
3=1 

^Xi2 =  (aJi.g + 0:2.2 + ^2.2 + ^4.2 + 2^5.2) 

Bracketing.—^When other operations are to be performed along 
with the addition, some form of bracketing may be used to indicate 
the order of operations. For example, 

tells us to square each value of Xi and then add up these squared 
values. But 

(?-)' 
tells us to add all the Xi values and then square the sum. 

The expression 

i   3 

says to square each Xij value and then add the squares. But 

says that for each value of i we should first add up the Xij over 
all values of j. Next, this (s x^j^ jg squared and these squared 
sums are added up over all values of i. If the range of / is from 
1 to 4 and the range of i is from 1 to 3, then this means 
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8/4 \2 

+ (i»2,l + fl^.2 + X2,3 + X2,4) 2 

+ (i»8.1 + i»3.2 + ^8.3 + 3^3.4) 2 

The expression 

(2S.«y 

would tell us to add up the x^ values over all combinations of i 
and / and then square the total. Thus, 

(84 \2 
s s % )  = (aJi.i + a;i.2 + 0:1,3 + 0:1,4 + 0:2.1 + 0:2.2 
»=1 i=l       / 

+ 0:2,3 + 0:2.4 + 0:3,1 + 0:3,2 + 0:3.3 + 0:3,4)2 

Where operations involving two or more different variables are 
to be performed, the same principles apply. 

s 
S XiVt = 0:12/1 + 0:22/2 + 0:32/3 
»=1 

But, 

(S xA (s yij = (xi + X2 + xs) (2/1 + 2/2 + 2/3) 

N.B. : It is easily seen but often forgotten that 

S Xi^ is not usually equal to (^xA 

Similarly, 

S Xiyi is not usually equal to (^xÄ ( S 2/í ) 

Some practice.—If you feel uncomfortable in the presence of 
this symbology, try the worked examples on page 79. 

Variance 
In a stand of trees, the diameters will usually show some varia- 

tion. Some will be larger than the mean diameter, some smaller, 
and some fairly close to the mean. Clearly, it would be informa- 
tive to know something about this variation. It is not hard to see 
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that more observations would be needed to get a good estimate of 
the mean diameter in a stand where diameters vary from 2 to 30 
inches than where the range is from 10 to 12 inches. The measure 
of variation most commonly used by statisticians is the variance. 

The variance of individuals in a population is a measure of the 
dispersion of individual unit values about their mean. A large 
variance indicates wide dispersion, a small variance indicates little 
dispersion. The variance of individuals is a population character- 
istic (a parameter). Very rarely will we know the population 
variance. Usually it must be estimated from the sample data. 

For most types of forest measurement data, the estimate of the 
variance from a simple random sample is given by 

Q2 — »Hi  
' ~     {n-D 

Where : s^ = Sample estimate of the population variance. 
y i — The value of the i^^ unit in the sample. 
y = The arithmetic mean of the sample, i.e., 

n 
S y i 

mi,    ^ "r ^^® number of units observed in the sample. 
Ihough It may not appear so, computation of the sample vari- 

ance IS simplified by rewriting the above equation as 

52 = i^l- 

(â ^'T 
(M-1) 

8 Ä°f ^t^lt^® observations on three units with the values 7, 
», and 12. For this sample our estimate of the variance is 

(72 + 82 + 122) — !^Ú1 
«2 =  3 257-243     „ 

2 - 2 = ^ 

forest m^^rÄ^**"'*' ^ i^™ *^'»"i*'^ to the survivors of most 
anee K if «Ar Tí.^^^' '' T^^^l^ ^^^ «1«a»-e root of the vari- ance. It is symbolized by s, and in the above example would be 
estimated as s = y? = 2.6458. 

Standard Errors and Confidence Limits 

subfe^cVto^™S"^^nil""^ '" a population, sample estimates are 
subject to variation. The mean diameter of a stand as estimated 
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from a sample of 3 trees will seldom be the same as the estimate 
that would have been obtained from other samples of 3 trees. One 
estimate might be close to the mean but a little high. Another 
might be quite a bit high, and the next might be below the mean. 
The estimates vary because different individual units are observed 
in the different samples. 

Obviously, it would be desirable to have some indication of how 
much variation might be expected among sample estimates. An 
estimate of mean tree diameter that would ordinarily vary be- 
tween 11 and 12 inches would inspire more confidence than one 
that might range from 6 to 18 inches. 

The previous section discussed the variance and the standard 
deviation (standard deviation = Vvariance) as measures of the 
variation among individuals in a population. Measures of the 
same form are used to indicate how a series of estimates might 
vary. They are called the variance of the estimate and the 
standard error of estimate (standard error of estimate = 
Vvariance of estimate). The term, standard error of estimate, is 
usually shortened to standard error when the estimate referred 
to is obvious. 

The standard error is merely a standard deviation, but among 
estimates rather than among individual units. In fact, if several 
estimates were obtained by repeated sampling of a population, the 
variance and standard error of these estimates could be computed 
from the equations given in the previous section for the variance 
and standard deviation of individuals. But repeated sampling is 
unnecessary; the variance and standard error can be obtained 
from a single set of sample units. Variability of an estimate de- 
pends on the sampling method, the sample size, and the variability 
among the individual units in the population, and these are the 
pieces of information needed to compute the variance and stand- 
ard error. For each of the sampling methods described in this 
handbook, the procedure for computing the standard error of 
estimate will be given. 

Computation of a standard error is often regarded as an un- 
necessary frill by some self-styled practical foresters. The fact is, 
however, that a sample estimate is almost worthless without some 
indication of its reliability. 

Given the standard error, it is possible to establish limits that 
suggest how close we might be to the parameter being estimated. 
These are called confidence limits. For large samples we can take 
as a rough guide that, unless a l-in-3 chance has occurred m 
sampling, the parameter will be within one standard error of the 
estimated value. Thus, for a sample mean tree diameter of 16 
inches with a standard error of 1.5 inches, we can say that the 
true mean is somewhere within the limits 14.5 to 17.5 inches. In 
making such statements we will, over the long run, be right an 
average of two times out of three. One time out of three we will, 
because of natural sampling variation, be wrong. The values 
given by the sample estimate plus or minus one standard error 
are called the 67-percent confidence limits. By spreading the limits 
we can be more confident that they will include the parameter. 
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Thus, the estimate plus or minus two standard errors will give 
limits that will include the parameter unless a l-in-20 chance has 
occurred. These are called the 95-percent confidence limits. The 
99-percent confidence limits are defined by the mean plus or minus 
2.6 standard errors. The 99-percent confidence limits will include 
the parameter unless a 1-in-lOO chance has occurred. 

It must be emphasized that this method of computing confidence 
limits will give valid approximations only for large samples. The 
definition of a large sample depends on the population itsetf, but 
in general any sample of less than 30 observations would not 
qualify. Some techniques of computing confidence limits for small 
samples will be discussed for a few of the sampling methods. 

Expanded Variances and Standard Errors 
Very often an estimate will be multiplied by a constant to put 

it in a more meaningful form. For example, if a survey has been 
made using one-fifth acre plots and the mean volume per plot 
computed, this estimate would be multiplied by 5 in order to put 
the estimated mean on a per acre basis. Or, for a tract of 800 
acres the mean volume per fifth-acre plot would be multiplied by 
4,000 (the number of one-fifth acres in the tract) in order to 
estimate the total volume. 

Since expanding a variable in this way must also expand its 
variability, it will be necessary to compute a variance and stand- 
ard error for these expanded values. This is easily done. If the 
variable x has variance s^ and this variable is multiplied by a con- 
stant (say k), the product {kx) will have a variance of k^s"^. 

Suppose the estimated mean volume per one-fifth acre plot is 
1,400 board feet with a variance of 2,500 board feet (giving a 
standard error of V2,500 = 50 board feet). The mean volume 
per acre is 

Mean volume per acre = 5 (1,400) = 7,000 board feet 
and the variance of this estimate is 

Variance of mean volume per acre = (5^) (2,500) = 62,500 
The standard error of the mean volume per acre would be 

V Variance of mean volume per acre = 250 board feet 

Note that if the standard deviation (or standard error) of x is 
s, then the standard deviation (or standard error) of kx is merely 
Ks, So, m the above case, since the standard error of the estimated 
mean volume per fifth-acre plot is 50, the standard error of the 
mean volume per acre is (5) (50) m 250. 

This is a simple but very important rule and anyone who will 
be dealing with sample estimates should master it. 

Variables may also be expanded by the addition of a constant. 
Hixpansion of this type does not affect variability and requires no 
adjustment of the variance or standard errors. Thus if 

zr=zx ■\-k 
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where a; is a variable and k a constant, then 
o 2 —  <j 2 

This situation arises where for computational purposes the data 
have been coded by the subtraction of a constant. The variance 
and standard error of the coded values are the same as for the 
uncoded values. Given the three observations 127, 104, and 114 
we could, for ease of computation, code these values by subtract- 
ing 100 from each, to make 27, 4, and 14. The variance of the 
coded values is 

(272 + 42 + 142) _ iM! 

s^ = 2        = 1^^ 

which is the same as the variance of the original values 

(1272 +1042 + 1142) - i?^ 
:133 

Coefficient of Variation 
The coefficient of variation (C) is the ratio of the standard de- 

viation to the mean. For a sample with a mean^ of ^ = 10 and a 
standard deviation of s = 4 we would estimate the coefficient of 
variation as 

s       4 C = - = jjT = OA or 40 percent 
X J.U 

Variance, our measure of variability among units, is often re- 
lated to the mean size of the units; large items tend to have a 
larger variance than small items. For example, the variance in a 
population of tree heights would be larger than the variance of 
the heights of a population of foresters. The coefficient of varia- 
tion puts the expression of variability on a relative basis. The 
population of tree heights might have a standard deviation of 4.4 
feet while the population of foresters might have a standard de- 
viation of 0.649 foot. In absolute units, the trees are more variable 
than the foresters. But, if the mean tree height is 40 feet and the 
mean height of the foresters is 5.9 feet, the two populations would 
have the same relative variability. They would both have a co- 
efficient of variation oí C = 0.11. 

Variance also depends on the measurement units used. The 
standard deviation of foresters' heights was 0.649 foot. Had the 
heights been measured in inches, the standard deviation would 
have been 12 times as large (If z = 12ir s^ = 12sJ or 7.788 
inches. But the coefficient of variation would be the same regard- 
less of the unit of measure. In either case, we would have 

^      s       0.649 foot      7.788 inches     ^ ^ ^ ^^ .. ^o^n^r,+ C = — = —^r-;r-^—r = i^Tm—:—Ï— = 0.11 or 11 perccnt X 5.9 feet      70.8   mches 

1 The sample mean of a variable x is frequently symbolized by x. 
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In addition to putting variabilities on a comparable basis, the 
coefficient of variation simplifies the job of estimating and re- 
membering the degree of variability of different populations. In 
many of the populations with which foresters deal, the coefficient 
of variation is approximately 100 percent. Because it is often 
possible to guess at the size of the population mean, we can readily 
estimate the standard deviation. Such information is useful in 
planning a sample survey. 

Covariance 
In some sampling methods measurements are made on two or 

more characteristics for each sample unit. In measuring forage 
production, for example, we might get the green weight of the 
grass clipped to a height of 1 inch from a circular plot 1 foot in 
diameter. Later we might get the ovendry weight of the same 
sample. 

Covariance is a measure of how two variables vary in relation- 
ship to each other (covariability). Suppose the two variables are 
labeled y and x. If the larger values of y tend to be associated 
with the larger values of x, the covariance will be positive. If the 
larger values of y are associated with the smaller values of x, the 
covariance will be negative. When there is no particular associa- 
tion of y and x values, the covariance approaches zero. Like 
the variance, the covariance is a population characteristic—a 
parameter. 

For simple random samples, the formula for the estimated co- 
variance {Sa,y) of X and y is 

S   {Xi — x){yi — \ 

O^ZTi)  

Computation of the sample covariance is simplified by rewriting 
the formula 

S Xiyi- (É '') (É ') 
n — 1 

Suppose that a sample of n = 6 units has produced the foUow- 
mg X and y values : 

i 1 

Vi 2 
Xi 12 

2 3 4 5 6 Totals 

12 7 14 11 8 54 
4 10 3 6 7 42 
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Then, 

^ (2) (12) + (12) (4) + . .. + (8) (7) - (ÍMH42)\ 

The negative value indicates that the larger values of y tend 
to be associated with the smaller values of x. 

Correlation Coefficient 
The magnitude of the covariance, like that of the variance, is 

often related to the size of the unit values. Units with large values 
of X and y tend to have larger covariance values than units with 
smaller x and y values. A measure of the degree of linear associa- 
tion between two variables that is unaffected by the size of the 
unit values is the simple correlation coefficient. A sample-based 
estimate (r) of the correlation coefficient is 

 Covariance of x and y Sa,v 
V (Variance of a;) (Variance ofy)       VT^^TTVT 

The correlation coefficient can vary between —1 and -j-l. As in 
covariance, a positive value indicates that the larger values of y 
tend to be associated with the larger values of x, A negative value 
indicates an association of the larger values of y with the smaller 
values of x. A value close to +1 or —1 indicates a strong linear 
association between the two variables. Correlations close to zero 
suggest that there is little or no linear association. 

For the data given in the discussion of covariance we found 
Saiy = —14.4. For the same data, the sample variance of x is 
s/ = 12.0, and the sample variance of y is s/ _ ig,4. Then the 
estimate of the correlation between y and x is 

—14 4 —14 4 ^^'^ ^^•^. = -0.969 
"      V (12.0) (18.4)       14.86 

The negative value indicates that as x increases y decreases, while 
the nearness of r to —1 indicates that the linear association is very 
close. 

An important thing to remember about the correlation coeffi- 
cient is that it is a measure of the linear association between two 
variables. A value of r close to zero does not necessarily mean 
that there is no relationship between the two variables. It merely 
means that there is not a good linear (straight-line) relationship. 
There might actually be a strong nonlinear relationship. 

It must also be remembered that the correlation coefficient com- 
puted from a set of sample data is an estimate, just as the sample 
mean is an estimate. Like the sample, the reliability of a córrela- 



16     AGRICULTURE HANDBOOK 232, U.S. DEPT. OF AGRICULTURE 

tion coefficient increases with the sample size. Most statistics 
books have tables that help in judging the reliability of a sample 
correlation coefficient. 

Independence 
When no relationship exists between two variables they are said 

to be independent; the value of one variable tells us absolutely 
nothing about the value of the other. The common measures of 
independence (or lack of it) are the covariance and the correla- 
tion coefficient. As previously noted, when there is little or no 
association between the values of two variables, their covariance 
and correlation approach zero (but keep in mind that the converse 
is not necessarily true; a zero correlation does not prove that 
there is no association but only indicates that there is no strong 
linear relationship). 

Completely independent variables are rare in biological popula- 
tions, but many variables are very weakly related and may be re- 
garded as independent. As an example, the annual height growth 
of pole-sized loblolly pine dominants is relatively independent of 
the stand basal area within fairly broad limits (say 50 to 120 
square feet per acre). There is also considerable evidence that 
periodic cubic volume growth of loblolly pine is poorly associated 
with (i.e., almost independent of) stand basal area over a fairly 
wide range. 

The concept of independence is also applied to sample estimates. 
In this case, however, the independence (or lack of it) may be 
«^e to the sampling method as well as to the relationship between 
the basic variables. For discussion purposes, two situations may 
be recognized: 

Two estimates have been made of the same parameter. 
Estimates have been made of two different parameters. 

In the first situation, the degree of independence depends en- 
tirely on the method of sampling. Suppose that two completely 
separate surveys have been made to estimate the mean volume per 
^^î"^ A\.?: ^^^^^^ stand. Because different sample plots are in- 
volved, the estimates of mean volume obtained from these surveys 
would be regarded as statistically independent. But suppose an 
estimate has been made from one survey and then additional 
sample plots are selected and a second estimate is made using the 
plot data from both the first and second surveys. Since some of 
the same observations enter both estimates, the estimates would 
not be independent. In general, two estimates of a single param- 
•l ^^ ml* Independent if some of the same observations are used 
m Doth. Ihe degree of association will depend on the proportions 
of observations common to the two estimates. 

In the second situation (estimates of two different parameters) 
wAtf^îC independence may depend on both the sampling 
T? ZLr^T • *if ^^¥^^ ""^ association between the basic variables, 
iofî^of^i^u ^^* ^i^ ^^^'^ diameter of a population of trees were 
^l^^^^yi \TÎÎ'^^? selecting a number of individual trees and 
^fSio^ both the height and diameter of each tree, the two 
estimates would not be independent. The relationship between 
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the two estimates (usually measured by their covariance or cor- 
relation) would, in this case, depend on the degree of association 
between the height and diameter of individual trees. On the other 
hand, if one set of trees were used to estimate mean height and 
another set were selected for estimating mean diameter, the two 
estimates would be statistically independent even though height 
and diameter are not independent when measured on the same tree. 

A measure of the degree of association (covariance) between 
two sample estimates is essential in the evaluation of the sampling 
error for several types of surveys. For the sampling methods de- 
scribed in this handbook, the procedure for computing the covari- 
ance of two estimates will be given when needed. 

Variances of Products, Ratios, and Sums 
In a previous section, we learned that if a quantity is estimated 

as the product of a constant and a variable (say Q = kz, where 
fc is a constant and z is a variable) the variance of Q will be 
SQ2 _ Jc^sJ^, Thus, if we wish to estimate the total volume of a 
stand, we would multiply the estimated mean per unit (y, a vari- 
able) by the total number of units (N, a constant) in the popula- 
tion. The variance of the estimated total will be N%^. Its stand- 
ard deviation (or standard error) would be the square root of its 
variance or Nsy. 

The variance of a product.—^In some situations the quantity in 
which we are interested will be estimated as the product of two 
variables and a constant. Thus, 

Qi = kzw 

where : fc = a constant and 

z and w = variables having variances s/ and sj^ and 
covariance Sgy, 

For large samples, the variance of Qi is estimated by 

V = Ox^($ + ^+- 
As an example of such estimates, consider a large forest survey 

project which uses a dot count on aerial photographs to estimate 
the proportion of an area that is in forest (p), and a ground 
cruise to estimate the mean volume per acre (v) oí forested land. 
To estimate the forested acreage, the total acreage (N) in the 
area is multiplied by the estimated proportion forested. This in 
turn is multiplied by the mean volume per forested acre to give 
the total volume. In formula form 

Total volume = N (p) (v) 

Where : N = The total acreage of the area (a known constant). 
p = The estimated proportion of the area that is forested. 
V = The estimated mean volume per forested acre. 
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The variance of the estimated total volume would be 

If the two estimates are made from separate surveys, they are 
assumed to be independent and the covariance set equal to zero. 
This would be the situation here where p is estimated from a 
photo dot count and v from an independently selected set of 
ground locations. With the covariance set equal to zero, the vari- 
ance formula would be 

'=(^^(^)w)X¥+¥) 
Variance of a ratio.—^In other situations, the quantity we are 

interested in will be estimated as the ratio of two estimates multi- 
plied by a constant. Thus, we might have 

w 

For large samples, the variance of Q2 can be approximated by 

^«2 -Q2 \_-^-^^--^\ 

This formula comes into use with the ratio-of-means estimator 
described m the section on regression estimators. 

Variance of a sí¿m.—Sometimes we might wish to use the sum 
of two or more variables as an estimate of some quantity. With 
two variables we might have 

Q3 = kiXx 4- k2X2 

where: ki and k2 = constants 
Xi and X2 =z variables having variance Si^ and Sz^ 

and covariance S12 
The variance of this estimate is 

SQS^ = kiW -f k2^S2^ + 2kik2Si2 

If we measure the volume of sawtimber (x) and the volume of 
poletimber (^) on the same plots (and in the same units of meas- 
ure) and find the mean volumes to be x and ^, with variances 
s^ and 5^2 and covariance s^, then the mean total volume in pole- 
size and larger trees would be 

Mean total volume = :g -j- ^ 

The variance of this estimate is 

s2 = s/^s^2^2s¿ij 
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The same result would, of course, be obtained by totaling the x 
and y values for each plot and then computing the variance of 
the totals. 

This formula is also of use where a weighted mean is to be com- 
puted. For example, we might have made sample surveys of two 
tracts of timber. 

Tract 1 
Size = 3,200 acres 
Estimated mean volume per acre = 4,800 board feet 
Variance of the mean = 112,500 board feet 

Tract 2 
Size = 1,200 acres 
Estimated mean volume per acre = 7,400 board feet 
Variance of the mean = 124,000 board feet 

In combining these two means to estimate the overall mean volume 
per acre we might want to weight each mean by the tract size 
before adding and then divide the sum of the weighted means by 
the sum of the weights (this is the same as estimating the total 
volume on both tracts and dividing by the total acreage to get the 
mean volume per acre). Thus, 

■ _ 3200(4800) + 1200(7400) 
^ ~ (3200 4- 1200) 

=(S)'«««) + (S) ""<»=»» 
Because the two tract means were obtained from independent 
samples, the covariance between the two estimates is zero, and the 
variance of the combined estimate would be 

z= (3200)^112,500) + (1200)M124,000) 
(4400)2 

= 68,727. 

The general rule for the variance of a sum is if 

Q = kyXi -\- kzXz + . . . + KXn 

where : kt   = constants 
Xi   = variables with variances s/ and covariance Si^, 

then 

Sg2 _ ^^25^2 ^ ^^W   + ... + KV + 2klk2Sl2 
+ 2kik3Si3 + . . . + 2kn.l knS^n.l)n 

Transformation of Variables 
Many of the procedures described in this handbook imply cer- 

tain assumptions about the nature of the variable being studied. 
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When a variable does not fit the assumptions for a particular pro- 
cedure some other method must be used or the variable must be 
changed (transformed). 

One of the common assumptions is that variability is inde- 
pendent of the mean. Some variables (e.g., those that follow a 
binomial or Poisson distribution) tend to have a variance that is 
in some way related to the mean—populations with large means 
often having large variance. In order to use procedures that as- 
sume that there is no relationship between the variance and the 
mean, these variables are frequently transformed. The transfor- 
mation, if properly selected, puts the original data on a scale in 
which its variability is independent of the mean. Some common 
transformations are the square root, arcsin, and logarithm. The 
arcsin transformation is illustrated on page 66. 

If a method assumes that there is a linear relationship between 
two variables, it is often necessary to transform one or both of 
the variables so that they satisfy this assumption. A variable may 
also be transformed to convert its distribution to the normal on 
which many of the simpler statistical methods are based. 

The amateur sampler will do well to seek expert advice when 
transformations are being considered. 

Finally, it should be noted that transformation is not synony- 
mous with coding, which is done to simplify computation. Nor is 
it a form of mathematical hocus-pocus aimed at obtaining answers 
that are in agreement with preconceived notions. 

SAMPLING METHODS FOR CONTINUOUS VARIABLES 

Simple Random Sampling 
All of the sampling methods to be described in this handbook 

have their roots in simple random sampling. Because it is basic, 
the method will be discussed in greater detail than any of the 
other procedures. 

The fundamental idea in simple random sampling is that, in 
^ÎÎ^^fi^Ç ^ sample of n units, every possible combination of n units 
should have an equal chance of being selected. This is not the 
same as requirmg that every unit in the population have an equal 
chance of being selected. The latter requirement is met by many 
iorms of restricted randomization and even by some systematic 
selection methods. 

Giving every possible combination of n units an equal chance 
pi appearing m a sample of size n may be difficult to visualize but 
IS easily accomplished. It is only necessary to be sure that at any 
stage oí the sampling the selection of a particular unit is in no 
way influenced by the other units that have been selected. To state 
It m another way, the selection of any given unit should be com- 
pletely independent of the selection of all other units. One way 
to do this IS to assign every unit in the population a number and 
^^ Q^x^^A^ Vi numbers from a table of random digits (table 1, 
p. »Z). Or, the numbers can be written on some equal-sized disks 
or slips of paper which are placed in a bowl, thoroughly mixed. 
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and then drawn one at a time. For units such as individual tree 
seeds, the units themselves may be drawn at random. 

The units may be selected with or without replacement. If selec- 
tion is with replacement, each unit is allowed to appear in the 
sample as often as it is selected. In sampling without replacement, 
a particular unit is allowed to appear in the sample only once. 
Most forest sampling is without replacement. As will be shown 
later, the procedure for computing standard errors depends on 
whether sampling was with or without replacement. 

Sample selection.—The selection method and computations may 
be illustrated by the sampling of a 250-acre plantation. The objec- 
tive of the survey was to estimate the mean cordwood volume per 
acre in trees more than 5 inches d.b.h. outside bark. The popula- 
tion and sample units were defined to be square quarter-acre plots 
with the unit value being the plot volume. The sample was to con- 
sist of 25 units selected at random and without replacement. 

The quarter-acre units were plotted on a map of the plantation 
and assigned numbers from 1 to 1,000. From a table of random 
digits, 25 three-digit numbers were selected to identify the units 
to be included in the sample (the number 000 was associated with 
the plot numbered 1,000). No unit was counted in the sample more 
than once. Units drawn a second time were rejected and an alter- 
native unit was randomly selected. 

The cordwood volumes measured on the 25 units were as 
follows : 

7 10 7 4 7 
8 8 8 7 5 
2 6 9 7 8 
6 7 11 8 8 
7 3 8 7 7 

Total = :175 

Estimates,—^If the cordwood volume on the i^^ sampling unit is 
designated Vt, the estimated mean volume (y) per sampling unit is 

n 

.-. _ il^' _ 7 + 8-f-2 + ...-f7 _ 175 
^ - ~~ir - 25 ~    25 

= 7 cords per quarter-acre plot. 

The mean volume per acre would, of course, be 4 times the mean 
volume per quarter-acre plot, or 28 cords. 

As there is a total of N = 1,000 quarter-acre units in the 250- 
acre plantation, the estimated total volume (7) in the planta- 
tion would be 

Y=zNy= (1,000) (7) = 7,000 cords. 

Alternatively, 

f z=z (28 cords per acre) (250 acres) = 7,000 cords. 
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Standard errors,—A first step in computing the standard error 
of estimate is to make an estimate (Sy^) of the variance of indi- 
vidual values of y. 

(È'^ï 
.,   ,?. ^'^-    «' 
"' -      (« -1) 

In this example, 

sJ 
(72+ 82+ ...+72) - 

(175)2 
25 

(25 - 1) 

^ 1.317 - 1,225 ^ 3 3333 ^^^^^ 
24 

When sampling is without replacement the standard error of 
the mean (s^) for a simple random sample is 

•.=V¥('-*) 
where :  N = total number of sample units in the entire population, 

n = number of units in the sample. 
For the plantation survey, 

** = V^l-ïSô) = V (.1533) (.975) 

= 0.387 cord 

This is the standard error for the mean per quarter-acre plot. By 
the rules for the expansion of variances and standard errors, the 
standard error for the mean volume per acre will be (4) (0.387) 
= 1.548 cords. 

Similarly, the standard error for the estimated total volume 
(sf) will be 

Sf = NSi = (1,000) (.387) = 387 cords. 

Sampling with replacement.—In the formula for the standard 

error of the mean, the term (1 —jr) is known as the finite popu- 

lation correction or fpc. It is used when units are selected with- 
out replacement. If units are selected with replacement, the fpc 



ELEMENTARY FOREST SAMPLING 23 

is omitted and the formula for the standard error of the mean 
becomes 

8, = ^. 

Even when sampling is without replacement the sampling frac- 
tion (n/N) may be extremely small, making the fpc very close to 
unity. If n/N is less than 0.05, the fpc is commonly ignored and 
the standard error computed from the shortened formula. 

Confidence limits for large samples.—By itself, the estimated 
mean of 28 cords per acre does not tell us very much. Had the 
sample consisted of only 2 observations we might conceivably have 
drawn the quarter-acre plots having only 2 and 3 cords, and the 
estimated mean would be 10 cords per acre. Or if we had selected 
the plots with 10 and 11 cords, the mean would be 42 cords per 
acre. 

To make an estimate meaningful it is necessary to compute 
confidence limits that indicate the range within which we might 
expect (with some specified degree of confidence) to find the 
parameter. As was discussed in the chapter on standard errors, 
the 95-percent confidence limits for large samples are given by 

Estimate zt 2 (Standard Error of Estimate) 
Thus the mean volume per acre (28 cords) that had a standard 
error of 1.548 cords would have confidence limits of 

28 ± 2 (1.548) = 24.90 to 31.10 cords per acre. 
And the total volume of 7,000 cords that had a standard error of 
387 cords would have 95-percent confidence limits of 

7,000 zt 2 (387) = 6,226 to 7,774 cords. 

Unless a l-in-20 chance has occurred in sampling, the popula- 
tion mean volume per acre is somewhere between 24.9 and 31.1 
cords, and the true total volume is between 6,226 and 7,774 cords. 

Because of sampling variation, the 95-percent confidence limits 
will, on the average, fail to include the parameter in 1 case out 
of 20. It must be emphasized, however, that these limits and the 
confidence statement take account of sampling variation only. 
They assume that the plot values are without measurement error 
and that the sampling and estimating procedures are unbiased 
and free of computational mistakes. If these basic assumptions are 
not valid, the estimates and confidence statements may be nothing 
more than a statistical hoax. 

Confidence limits for small samples.—Ordinarily, large-sample 
confidence limits are not appropriate for samples of less than 30 
observations. For smaller samples the proper procedure depends 
on the distribution of the unit values in the parent population, a 
subject that is beyond the scope of this handbook. Fortunately, 
many forest measurements follow the bell-shaped normal distribu- 
tion, or a distribution that can be made nearly normal by trans- 
formation of the variable. 
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For samples of any size from normally distributed populations, 
Student's t value can be used to compute confidence limits. The 
general formula is 

Estimate ± (t) (Standard Error of Estimate). 
The values of t have been tabulated (table 2, page 86). The par- 
ticular value of t to be used depends on the degree of confidence 
desired and on the size of the sample. For 95-percent confidence 
limits, the t values are taken from the column for a probability 
of .05. For 99-percent confidence limits, the t value would come 
from the .01 probability column. Within the specified colunms, the 
appropriate t for a simple random sample of n observations is 
found in the row for (n — 1) df's (degrees of freedom^). For a 
simple random sample of 25 observations the t value for comput- 
ing the 95-percent confidence limits will be found in the .05 column 
and the 24 df row. This value is 2.064. Thus, for the plantation 
survey that showed a mean per-acre volume of 28 cords and a 
standard error of the mean of 1.548 cords, the small-sample 95- 
percent confidence limits would be 

28 ± (2.064) (1.548) = 24.80 to 31.20 cords 
The same t value is used for computing the 95-percent confidence 
limits on the total volume. As the estimated total was 7,000 cords 
with a standard error of 387 cords, the 95-percent confidence 
limits are 

7,000 ± (2.064) (387) = 6,201 to 7,799 cords. 
Size of sample.—In the example illustrating simple random 

sampling, 25 units were selected. But why 25? Why not 100? Or 
10? All too often the number depends on the sampler's view of 
what looks about right. But there is a somewhat more objective 
solution. That is to take only the number of observations needed 
to give the desired precision. 

In planning the plantation survey, we could have stated that 
unless a l-in-20 chance occurs we would like our sample estimate 
of the mean to be within ±: E cords of the population mean. As 
the small-sample confidence limits are computed as y it t (Sy), this 
is equivalent to saying that we want 

tisç) = E 

For a simple random sample 

«-V¥(^-F) 
2 In this handbook the expression "degrees of freedom" refers to a parameter 

in the distribution of Student's t. When a tabular value of t is required, the 
number of degrees of freedom (df's) must be specified. The expression is not 
easily explained in nonstatistical language. One definition is that the df*s are 
equal to the number of observations in a sample minus the number of inde- 
pendently estimated parameters used in calculating the sample variance. Thus, 
in a simple random sample of n observations the only estimated parameter 
needed in calculating the sample variance is the mean (a?), and so the df's 
would be (n — 1). 



ELEMENTARY FOREST SAMPLING 25 

Substituting for Sy in the first equation we get 

Rewritten in terms of the sample size (n) this becomes 

To solve this relationship for n, we must have some estimate 
(s/) of the population variance. Sometimes the information is 
available from previous surveys. In the illustration, we found 
Sy^ = 3.83, a value which might be taken as representative of the 
variation among quarter-acre plots in this or similar populations. 
In the absence of this information, a small preliminary survey 
might be made in order to obtain an estimate of the variance. 
When, as often happens, neither of these solutions is feasible, a 
very crude estimate can be made from the relationship 

-(?)■ 
where : R = estimated range from the smallest to the largest unit 

value likely to be encountered in sampling. 
For the plantation survey we might estimate the smallest y-value 
on quarter-acre plots to be 1 cord and the largest to be 10 cords. 
As the range is 9, the estimated variance would be 

■■ = {iy   =5.06 
This approximation procedure should be used only when no other 
estimate of the variance is available. 

Having specified a value of E and obtained an estimate of the 
variance, the last piece of information we need is the value of t. 
Here we hit somewhat of a snag. To use t we must know the 
number of degrees of freedom. But, the number of df's must be 
(n ~ 1) and n is not known and cannot be determined without 
knowing t 

An iterative solution will give us what we need, and it is not as 
difficult as it sounds. The procedure is to guess at a value of n, 
use the guessed value to get the degrees of freedom for t, and 
then substitute the appropriate t value in the sample-size formula 
to solve for a first approximation of n. Selecting a new n some- 
where between the guessed value and the first approximation, but 
closer to the latter, we compute a second approximation. The proc- 
ess is repeated until successive values of n are the same or only 
slightly different. Three trials usually suffice. 

To illustrate the process, suppose that in planning the planta- 
tion survey we had specified that, barring a 1-in-lOO chance, we 
would like the estimate to be vdthin 3.0 cords of the true mean 
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volume per acre. This is equivalent to E = 0.75 cord per quarter- 
acre. From previous experience, we estimate the population vari- 
ance among quarter-acre plots to be s/ = 4, and we know that 
there is a total of N = 1,000 units in the population. To solve for 
n, this information is substituted in the sample-size formula given 
on page 25. 

(0.75)2 ^ 
(Í2) (4) "^ 1,000 

We will have to use the t value for the .01 probability level, but 
we do not know how many degrees of freedom t will have without 
knowing n. As a first guess, we can try n = 61; then the value 
of t with 60 degrees of freedom at the .01 probability level is 
t = 2.66. Thus, the first approximation will be 

^' -    (0.752) 1      -        .5625 
(2.662) (4) T 1^000        (7.0756) (4) ^ 1.000 

= 47.9 

A second guessed value for n would be somewhere between 61 and 
48, but closer to the computed value. We might test n = 51, for 
which the value of í (50 df*s) at the .01 level is about 2.68, whence 

712 = .5625 1 
(7.1824) (4) "^ 1,000 

= 48.6 

The desired value is somewhere between 51 and 48.6 but much 
closer to the latter. Because the estimated sample size is, at best, 
only a good approximation, it is rather futile to strain on the com- 
putation of n. In this case we would probably settle on n = 50, 
a value that could have been easily guessed after the first approxi- 
mation was computed. 

If the sampling fraction-^ is likely to be small (say, less than 

0.05), the finite-population correction il — ^ ) may be ignored 

in the estimation of sample size and the formula simplified to 

This formula is also appropriate in sampling with replacement. 
In the previous example the simplified formula gives an estimated 
sample size oí n = 51. 

The short formula is frequently used to get a first approxima- 
tion of n. Then, if the sample size indicated by the short formula 
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is a considerable proportion (say over 10 percent) of the number 
of units in the population and sampling will be without replace- 
ment, the estimated sample size is recomputed with the long 
formula. 

Ejfect of plot size on variance.—^In estimating sample size, the 
effect of plot size and the scale of the unit values on variance must 
be kept in mind. In the plantation survey a plot size of one-quarter 
acre was selected and the variance among plot volumes was esti- 
mated to be s^ = 4. This is the variance among volumes per 
quarter-acre. Because the desired precision was expressed on a 
per-acre basis it was necessary to modify either the precision 
specification or s^ to get them on the same scale. In the example, 
s^ was used without change and the desired precision was divided 
by 4 to put it on a quarter-acre basis. The same result could have 
been obtained by leaving the specified precision unchanged and 
putting the variance on a per-acre basis. Since the quarter-acre 
volumes would be multiplied by 4 to put them on a per-acre basis, 
the variance of quarter-acre volumes should be multiplied by 16. 
(Remember : If a; is a variable with variance s^, then the variance 
of a variable z = kx is k^s^). 

Plot size has an additional effect on variance. At the same scale 
of measurement, small plots will almost always be more variable 
than large ones. The variance in volume per acre on quarter-acre 
plots would be somewhat larger than the variance in volume per 
acre on half-acre plots, but slightly smaller than the variance in 
volume per acre of fifth-acre plots. Unfortunately, the relation of 
plot size to variance changes from one population to another. 
Large plots tend to have a smaller variance because they average 
out the effect of clumping and holes. In very uniform populations, 
changes in plot size have little effect on variance. In nonuniform 
populations the relationship of plot size to variance will depend 
on how the sizes of clumps and holes compare to the plot sizes. 
Experience is the best guide as to the effect of changing plot size 
on variance. Where neither experience nor advice is available, a 
very rough approximation can be obtained by the rule : 

If plots of size Pi have a variance Si^ then, on the same scale 
of measurement, plots of size Pa will have a variance roughly 
equal to 

S2^ = Si2 ^/PJP¡ 

Thus, if the variance in cordwood volume per acre on quarter-acre 
plots is Si^ = 61, the variance in cordwood volume per acre on 
tenth-acre plots will be roughly 

61 VO.25/0.10 = 96 

The same results will be obtained without worry about the scale 
of measurement if the squared coefficients of variation (C^) are 
used in place of the variances. The formula would then be 
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Practice problem.—^A survey is to be made to estimate the mean 
board-foot volume per acre in a 200-acre tract. Barring a l-in-20 
chance, we would like the estimate to be within 500 board feet of 
the population mean. Sample plots will be one-fifth acre. A survey 
in a similar tract showed the standard deviation among quarter- 
acre plot volumes to be 520 board feet. What size sample will be 
needed? 
Problem Solution: 

The variance among quarter-acre plot volumes is 520^ = 270,- 
400. For quarter-acre volumes expressed on a per-acre basis the 
variance would be 

Si2 = (42) (270,400) = 4,326,400 

The estimated variance among fifth-acre plot volumes expressed 
on a per-acre basis would then be 

Vo.2 ''=''^¥¡=''^^''^''^0.20 
= (4,326,400) (1.118) 
= 4,836,915 

The population size is iV = 1,000 fifth-acre plots. 
If as a first guess n = 61, the t value at the .05 level with 60 

degrees of freedom is 2.00. The first computed approximation of 
n is 

^-= (500)^'       ,     —-^^-^ 
(4) (4,836,915) "^ 1,000 

The correct solution is between 61 and 71.8 but much closer to the 
computed value. Repeated trials will give values between 71.0 and 
71.8. The sample size (n) must be an integral value and, because 
71 is too small, a sample of n = 72 observations would be re- 
quired for the desired precision. 

Stratified Random Sampling 
Often we have knowledge of a population which can be used to 

increase the precision or usefulness of our sample. Stratified ran- 
dom sampling is a method that takes advantage of certain types 
of mformation about the population. 

In stratified random sampling, the units of the population are 
grouped together on the basis of similarity of some characteristic. 
Each group or stratum is then sampled and the group estimates 
are combined to give a population estimate. 

In sampling a forest, we might set up strata corresponding to 
the major timber types, make separate sample estimates for each 
type, and then combine the type data to give an estimate for the 
entire population. If the variation among units within tsrpes is 
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less than the variation among units that are not in the same type, 
the population estimate will be more precise than if sampling had 
been at random over the entire population. 

The sampling and computational procedures can be illustrated 
with data from a cruise made to estimate the mean cubic-foot 
volume per acre on an 800-acre forest. On aerial photographs the 
tract was divided into three strata corresponding to three major 
forest types ; pine, bottom-land hardwoods, and upland hardwoods. 
The boundaries and total acreage of each type were known. Ten 
one-acre plots were selected at random and without replacement 
in each stratum. 

Stratum 

I. Pine 

II. Bottom-land hardwoods 

Observations 

570 510 600 
640 590 780 Total = = 6,100 
480 670 700 
560 

520 630 810 
710 760 580 Total = = 7,370 
770 890 860 
840 

420 540 320 
210 180 270 Total = = 3,040 
290 260 200 
350 

III. Upland hardwoods 

Estimates.—^The first step in estimating the population mean 
per unit is to compute the sample mean (yn) for each stratum. 
The procedure is the same as for the mean of a simple random 
sample. 

y I   =z 6,100/10 = 610 cubic feet per acre for the pine type 
yii = 7,370/10 = 737 cubic feet per acre for bottom-land hard- 

woods 
yiii = 3,040/10 = 304 cubic feet per acre for upland hardwoods 

The mean of a stratified sample (fst) is then computed by 

^Nnyn 
h=l 

Where : L   = The number of strata. 

Nh =z The total size (number of units) of stratum 
h (Är=l, ...,L). 

N = The total number of units in all strata 
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If the strata sizes are 

I. Pine = 320 acres = Nj 
II. Bottom-land hardwoods   = 140 acres = Nn 
III. Upland hardwoods = 340 acres = Nm 

Total   = 800 acres = N 

Then the estimate of the population mean is 

.   _ (320) (610) + (140) (737) + (340) (304) 
Vat — gQQ 

= 502.175 cubic feet per acre 

For the estimate of the population total (Yst), simply omit the 
divisor N. 

Yst = S NKVJ, = 320(610) + 140(737) + 340(304) = 401,740 

Alternatively, 

f,t = Ny,t = 800 (502.175) =z 401,740 

Standard errors.—To determine standard errors, it is first 
necessary to obtain the estimated variance among individuals 
within each stratum (s^^). These variances are computed in the 
same manner as the variance of a simple random sample. Thus, 
the variance within Stratum I (Pine) is 

(5702 ^ 6402 -I- ... + 7002) _ (61^0)^ 
Sj2 = i5  

(10-1) 
_ 3,794,000 - 3,721,000 
" 9 
= 8111.1111 

Similarly, 

S//2 = 15,556.6667 
s,,,2 ^ 12,204.4444 

From these values we find the standard error of the mean of a 
stratified random sample (»»,*) by the formula 

Where: %» = Number of units observed in stratum h. 
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This looks rather ferocious and does get to be a fair amount of 
work, but it is not too bad if taken step by step. For the timber 
cruising example we would have 

1    [(320)2(8111.1111)/ 
8002. L 10 

(340)2(12,204.4444)/ 10 \1 
10 

=  V383.920659 
=  19.594 

As a rough rule we can say that unless a l-in-20 chance has 
occurred, the population mean is included in the range 

y,t ± 2 (Si,,) = 502.175 ± 2(19.594) 
= 463 to 541 

If sampling is with replacement or if the sampling fraction 
within a particular stratum (njJNn) is small, we can omit the 

finite-population correction (l — -rr-) for that particular stratum 
when calculating the standard error. 

The population total being estimated by í"«* = Nyst, the stand- 
ard error of fat is simply 

Sf^^  - Nsy^^ = 800(19.594) = 15,675 

Discussion.—Stratified random sampling offers two primary 
advantages over simple random sampling. First, it provides sepa- 
rate estimates of the mean and variance of each stratum. Second, 
for a given sampling intensity, it often gives more precise esti- 
mates of the population parameters than would a simple random 
sample of the same size. For this latter advantage, however, it is 
necessary that the strata be set up so that the variability among 
unit values within the strata is less than the variability among 
units that are not in the same stratum. 

Some drawbacks are that each unit in the population must be 
assigned to one and only one stratum, that the size of each stratum 
must be known, and that a sample must be taken in each stratum. 
The most common barrier to the use of stratified random sampling 
is lack of knowledge of the strata sizes. If the sampling fractions 
are small in each stratum, it is not necessary to know the exact 
strata sizes; the population mean and its standard error can be 
computed from the relative sizes. If n = the relative size of stra- 
tum h, the estimated mean is 

L 

^,       h=l 

h=i 
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The estimated standard error of the mean is 

It is worth repeating that the sizes or relative sizes of the strata 
must be known in advance of sampling; the error formulae given 
above are not applicable if the observations from which the strata 
means are estimated are also used to estimate the strata sizes. 

Sample Allocation in Stratified Random Sampling 

Assuming we have decided on a total sample size of n observa- 
tions, how do we know how many of these observations to make 
in each stratum? Two common solutions to this problem are known 
as proportional and optimum allocation. 

Proportional allocation.—In this procedure the proportion of 
the sample that is selected in the h*^ stratum is made equal to the 
proportion of all units in the population which fall in that stratum. 
If a stratum contains half of the units in the population, half of 
the sample observations would be made in that stratum. In equa- 
tion form, if the total number of sample units is to be n, then for 
proportional allocation the number to be observed in stratum h is 

nn =(t)» 
In the previous example, the 30 sample observations were divided 
equally among the strata. For proportional allocation we would 
have used 

nni = (|g) 30 = 12.75 or 13 

Optimum allocation.—In optimum allocation the observations 
are allocated to the strata so as to give the smallest standard error 
possible with a total of n observations. For a sample of size n, the 
number of observations (nn) to be made in stratum h under 
optimum allocation is 

,     NnSn 
nn={-L  
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In terms of the previous example the value of N^SK for each 
stratum is 

Nj8i =320V8111.1111 =320(90.06) =28,819.20 

NjiSjj = 140 V15,556.6667 = 140 (124.73) = 17,462.20 

NniSnj = 340 V 12,204.4444 = 340 (110.47) = 37,559.80 

Total = 83,841.20 = S N^Sj, 
h=i 

Applying these values in the formula, we would get 

— (SSS) 30 = 13.4 or 14 

Here optimum allocation is not much different from proportional 
allocation. Sometimes the difference is great. 

Optimum Allocation With Varying Sampling Costs^ 

Optimum allocation as just described assumes that the sampling 
cost per unit is the same in all strata. When sampling costs vary 
from one stratum to another, the allocation giving the most in- 
formation per dollar is 

nn: 

Where : c» = Cost per sampling unit in stratum h. 
The best way to allocate a sample among the various strata de- 

pends on the primary objectives of the survey and our information 
about the population. One of the two forms of optimum allocation 
is preferable if the objective is to get the most precise estimate 
of the population mean for a given cost. If we want separate esti- 
mates for each stratum and the overall estimate is of secondary 
importance, we may want to sample heavily in the strata having 
high-value material. Then we would ignore both optimum and pro- 
portional allocation and place our observations so as to give the 
degree of precision desired for the particular strata. 

We cannot, of course, use optimum allocation without having 
some idea about the variability within the various strata. The 
appropriate measure of variability within the stratum is the 
standard deviation (not the standard error), but we need not 
know the exact standard deviation (s^) for each stratum. In place 
of actual «A values, we can use relative values. In our example, if 
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we had known that the standard deviations for the strata were 
about in the proportions SiiSn'.Sm = 9:12:11, we could have used 
these values and obtained about the same allocation. Where opti- 
mum allocation is indicated but nothing is known about the 
strata standard deviations, proportional allocation is often very 
satisfactory. 

Caution! In some situations the optimum allocation formula 
will indicate that the number of units (un) to be selected in a 
stratum is larger than the stratum (Nn) itself. The common pro- 
cedure then is to sample all units in the stratum and to recompute 
the total sample size (n) needed to obtain the desired precision. 
The method of estimating n is discussed in the next section. 

Sample Size in Stratified Random Sampling 

In order to estimate the total size of sample (n) needed in a 
stratified random sample, the following pieces of information are 
required : 

A statement of the desired size of the standard error of the 
mean. This will be symbolized by D. 

A reasonably good estimate of the variance (SA^) or standard 
deviation (s^) among individuals within each stratum. 

The method of sample allocation. If the choice is optimum 
allocation with varying sampling costs, the sampling cost 
per unit for each stratum must also be known. 

Given this hard-to-come-by information, we can estimate the size 
of sample (n) with these formulae : 

For equal samples in each of the L strata. 

NW^Jr ^^nSi? 
h=l 

For proportional allocation, 

h=i 

For optimum allocation with equal sampling costs among strata, 

V2 

h=i 
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For optimum allocation with varying sampling costs among strata, 

When the sampling fractions (TF-) are likely to be very small for 
all strata or when sampling will be with replacement, the second 

term of the denominators of the above formulae ( S N^s/ J may 
be omitted, leaving only NW^. 

If the optimum allocation formula indicates a sample (w^) 
greater than the total number of units (Nji) in a particular stra- 
tum, rih is usually made equal to Nji ; i.e., all units in that particu- 
lar stratum are observed. The previously estimated sample size 
(n) should then be dropped and the total sample size (vf) and 
allocation for the remaining strata recomputed omitting the Nn 
and SA values for the offending stratum but leaving N and D 
unchanged. 

As an illustration, assume a population of 4 strata with sizes 
(Nji) and estimated variances Sj,^ as follows : 

stratum N^ «^2 g^ ¡^^g^ ^fc«h^ 

1  200        400 

2  100        900 

3  400        400 

4  20 19,600 

N = 720 17,800       722,000 

With optimum allocation (same sampling cost per unit in all 
strata), the number of observations to estimate the population 
mean with a standard error of I> = 1 is 

The allocation of these observations according to the optimum 
formula would be 

20 4,000 80,000 

30 3,000 90,000 

20 8,000 160,000 

140 2,800 392,000 
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The number of units allocated to the fourth stratum is greater 
than the total size of the stratum. Thus every unit in this stratum 
would be selected (^4 = N^ = 20) and the sample size for the 
first three strata recomputed. For these three strata, 

S A^ASA = 15,000 

S NnSj,^ = 330,000 

Hence, 

(15,000)^ 
(7202) (12) -I- 330,000 = 265 

And the allocation of these observations among the three strata 
would be 

'^^(lIS) 265 = 70.7 or 71 

«^ = (112) 265 = 53.0 or 53 

«8 = ( lIS) 265 = 141.3 or 141 

Regression Estimators 

Regression estimators, like stratification, were developed to in- 
crease the precision or efliiciency of a sample by making use of 
supplementary information about the population being studied. 
If we have exact knowledge of the basal area of a stand of timber, 
the relationship between volume and basal area may help us to 
iniprove our estimate of stand volume. The sample data provides 
mfonnation on the volume-basal area relationship which is then 
applied to the known basal area, giving a volume estimate that 
may be better or cheaper than would be obtained by sampling 
volume alone. 

Suppose a 100 percent inventory of a 200-acre pine stand indi- 
cates a basal area of 84 square feet per acre in trees 3.6 inches 
^^ ¿¿riL^^^ larger. Assume further that on 20 random plots, each 
one-fifth acre in size, measurements were made of the basal area 
{x) and volume (y) per acre. 
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Basal area 
per acre (a?) 

(«9./«.) 

88 
72 
80 
96 
64 
48 
76 
85 
93 

110 
88 
80 

Volume per 
acre {y) 
(Ctt. St.) 

1,680 
1,460 
1,590 
1,880 
1,240 
1,060 
1,500 
1,620 
1,880 
2,140 
1,840 
1,630 

Basal area 
per acre (x) 

iaq. ft.) 

82 
76 
86 
73 
79 
85 
84 
75 

Volume per 
acre (y) 
(cu. ft.) 

1,560 
1,560 
1,610 
1,370 
1,490 
1,710 
1,600 
1,440 

Total. 

Mean. 

. 1,620 

...81 

31,860 

1,593 

Some values that will be needed later are 

n     =20 
Xy   =31,860 
y     = 1,593 
Xy^ =51,822,600 

Xxy = 2,635,500 
%x   =1,620 
X     =81 
Xx^ = 134,210 

SSy =Xy^. iXyV 
— 51,822,600 (31,860)2 

20 = 1,069,620 

_   SSy   _ 1,069,620 
(n-1) ~       19 : 56,295.79 

BS^ =Xx^- iXxY 
134,210-ilf^ = 2,990 

SF^y = Xxy _ (?^)iM ^ 2,635,500 - d^^^O) (31,860) ^ ^^ g^^ 

N     = total number of fifth-acre plots in the population (= 1,000) 

The relationship between y and x may take one of several forms, 
but here we will assume that it is a straight line. The equation 
for the line can be estimated from 

yj,=,y+b (X-x) 

Where : ya = The mean value of y as estimated from X 
(a specified value of the variable X). 

y   = The sample mean of y (= 1,593). 
X   = The sample mean of a; (= 81). 
b   = The linear regression coefficient of y on x. 

For the linear regression estimator used here, the value of the 
regression coefliicient is estimated by 

& = SPxi        54,840 
SSa, ~   2,990 

= 18.34 
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Thus, the equation would be 

'pR =  1,593 + 18.34 (X - 81) 
=  107.46 + 18.34 X 

To estimate the mean volume per acre for the tract we substitute 
for X the known mean basal area per acre. 

VR r=  107.46 + 18.34 (84) = 1,648 cubic feet per acre 

Standard error.—In computing standard errors for simple ran- 
dom sampling and stratified random sampling, it was first neces- 
sary to obtain an estimate (s/) of the variability of individual 
values of y about their mean. To obtain the standard error for a 
regression estimator, we need an estimate of the variability of 
the individual ^/-values about the regression of y onx, A measure 
of this variability is the standard deviation from regression 
(Sy,a) which is computed by 

ocf       K^^xy) 
kUkioa 

{n-2) 

1,069,620      (^^'^^^>' 2,990 
(20 - 2) 

59.53 

The symbol Sy,g, bears a strong resemblance to the covariance sym- 
bol (Sya,) with which it must not be confused. 

Having the standard deviation from regression, the standard 
error of yR is 

= 13.57 

With such a small sampling fraction i-^ = 0.02], the finite- 

population correction ( 1 — ;^) could have been ignored, and the 
standard error would be 13.71. 

It is interesting to compare s^^ with the standard error that 
would have been obtained by estimating the mean volume per acre 
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from the ¡/-values only. The estimated mean volume per acre would 
have been y = 1,593 (compared to 1,648 using the regression 
estimator). The standard error of this estimate would be 

= 52.52 (compared to a standard error of 13.57 
with the regression estimator). 

^-^^-■'^ (0.98) 20 

The family of regression estimators.—The regression procedure 
in the above example is valid only if certain conditions are met. 
One of these is, of course, that we know the population mean for 
the supplementary variable {x). As will be shown in the next 
section (Double Sampling), an estimate of the population mean 
can often be substituted. 

Another condition is that the relationship oi y to x must be 
reasonably close to a straight line within the range of x values 
for which y will be estimated. If the relationship departs very 
greatly from a straight line, our estimate of the mean value of 
y will not be reliable. Often a curvilinear function is more 
appropriate. 

A third condition is that the variance of y about its mean should 
be the same at all levels of x. This condition is difficult to evaluate 
with the amount of data usually available. Ordinarily the question 
is answered from our knowledge of the population or by making 
special studies of the variability of y. If we know the way in 
which the variance changes with changes in the level of ic a 
weighted regression procedure may be used. 

Thus, the linear regression estimator that has been described 
is just one of a large number of related procedures that enable us 
to increase our sampling efficiency by making use of supplemen- 
tary information about the population. Two other members of this 
family are the ratio-of-means estimator and the mean-of-ratios 
estimator. 

The ratio-of-means estimator is appropriate when the relation- 
ship oi y to X is in the form of a straight line passing through 
the origin and when the standard deviation of y at any given level 
of X is proportional to the square root of x. The ratio estimate 
(yn) of mean y is 

Where :  R — The ratio of means obtained from the sample 

X       %x 

X = The known population mean of x. 
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The standard error of this estimate can be reasonably approxi- 
mated for large samples by 

-^/( 
g/ + i^ V - 2i^g^ 

')(-F) 
Where : z^ = The estimated variance of y. 

8/ = The estimated variance of x. 
8ay = The estimated covariance of x and y. 

It is difficult to say when a sample is large enough for the stand- 
ard error formula to be reliable, but Cochran (see References, 
p. 78) has suggested that n must be greater than 30 and also 
large enough so that the ratios Sy/y and s¿/x are both less than 0.1. 

To illustrate the computations, assume that for a population of 
N = 400 units, the population mean of x is known to be 62 and 
that from this population a sample of ?i = 10 units is selected. 
The y and x values for these 10 units are found to be 

/rvation Vi «t Observation Vt •i 

1         8 62 8    ..   11 96 
2       13 81 9    ..     5 36 
3        5 40 10    ..   12 70 
4        6 46 — 
5      19 123 Total   .. ..   96 680 
6        9 74 
7  ....      8 52 Mean   .. ..  9.6 68 

From this sample the ratio-of-means is 

9.6 R = 68 0.141 

The ratio-of-means estimator is then 

yR = RX= 0.141 (62) = 8.742 

To compute the standard error of the mean we will need the vari- 
ances of y and x and also the covariance. These values are com- 
puted by the standard formulae for a simple random sample. Thus, 

(82 + 132 + ... + 122) _ 
2 _ 10 

(10 - 1) 

(622 4. 812 + ... _|. 702) _ 
2 — 

(680)2 
10 

18.7111 

(10 - 1) 

(8) (62) + (13) (81) + ... + (12) (70) 

= 733.5556 

(96) (680) 
10 

(10 - 1) 
= 110.2222 
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Substituting these values in the formula for the standard error 
of the mean gives 

^*«=^/P ,7111) + (0.1412) (733.5556) - 2(0.141) (110.2222)\ 
10 ) 

/   4ooy 

= V-215690 

= 0.464 

This computation is, of course, for illustrative purposes only. For 
the ratio-of-means estimator, a standard error based on less than 
30 observations is usually of questionable value. 

The mean-of-ratios estimator is appropriate when the relation 
0Î y to X is in the form of a straight line passing through the 
origin and the standard deviation of 2/ at a given level of x is 
proportional to x (rather than to V^) • The ratio (r^) of Vi to Xi 
is computed for each pair of sample observations. Then the esti- 
mated mean of y for the population is 

yR = ÈX 

Where : È = the mean of the individual ratios (n), i.e., 

n 

n 

To compute the standard error of this estimate we must first 
obtain a measure (s,.^) of the variability of the individual ratios 
(r*) about their mean. 

s,^ = 
    t=l n 

{n-D 

The standard error for the mean-of-ratios estimator of mean 
y is then 

-^#(-s) 



18 2.00 
48 1.98 
46 2.35 
74 2.32 
58 2.17 
26 2.23 
60 2.05 
51 1.92 
25 2.16 
7 2.00 
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Suppose that a set of n = 10 observations is taken from a 
population OÎN = 100 units having a mean x value of 40 : 

Ohaervation Vt *i **4 

1           36 
2           95 
3         108 
4        172 
5         126 
6           58 
7        123 
8           98 
9           54 

10           14 

Total     21.18 

The sample mean-of-ratios is 

R = 2L18 ^ 2.118 

And this is used to obtain the mean-of-ratios estimator 

yß = EX= 2.118 (40) = 84.72 

The variance of the individual ratios is 

(2.002 + 1.982 + ... + 2.002) _ i^'^-^^)^ 
S.2 = ^^^-^^ 15_ = 0.022484 

Thus, the standard error of the mean-of-ratios estimator is 

s,,^40^rö^022484 /        iO_\ 
""       V    10     V     100/ 

= 1.799 

Numerous other forms of ratio estimators are possible, but the 
above three are the most common. Less common forms involve 
fitting some curvilinear function for the relationship of y to x, or 
fitting multiple regressions when information is available on more 
than one supplementary variable. 

Warning! The forester who is not sure of his knowledge of 
regression techniques would do well to seek advice before adapt- 
ing regression estimators in his sampling. Determination of the 
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most appropriate form of estimator can be very tricky. The two 
ratio estimators are particularly troublesome. They have a simple, 
friendly appearance that beguiles samplers into misapplications. 
The most common mistake is to use them when the relationship 
of 2/ to £c is not actually in the form of a straight line through the 
origin (i.e., the ratio oí y to x varies instead of being the same 
at all levels of x). To illustrate, suppose that we wish to estimate 
the total acreage of farm woodlots in a county. As the total area 
in farms can probably be obtained from county records, it might 
seem logical to take a sample of farms, obtain the sample ratio 
of mean forested acreage per farm to mean total acreage per 
farm, and multiply this ratio by the total farm acreage to get the 
total area in farm woodlots. This is, of course, the ratio-of-means 
estimator, and its use assumes that the ratio of y to x is SL con- 
stant (i.e., can be graphically represented by a straight line pass- 
ing through the origin). It will often be found, however, that the 
proportion of a farm that is forested varies with the size of the 
farm. Farms on poor land tend to be smaller than farms on fertile 
land, and, because the poor land is less suitable for row crops or 
nasture. a higher proportion of the small-farm acreage may be 
left in forest. The ratio estimate mav be seriously biased. 

The total number of diseased seedline-s in a nursery might be 
estimated by getting the mean pronortion of infected seedlings 
from a number of sample plots and multinlying this nroportion 
by the known total number of seedlings in the nursery. Here aerain 
we would be assuming that the proportion of infected seedlings 
is the same regardless of the number of seedlines per plot. For 
many diseases this assumption would not be valid, for the rate 
of infection may vary with the seedling density. 

Double Sampling 

Double sampling was devised to permit the use of regression 
estimators when the population mean or total of the supplemen- 
tary variable is unknown. A large sample is taken in order to 
obtain a good estimate of the mean or total for the supplementary 
variable (x). On a subsample of the units in this large sample, 
the y values are also measured to provide an estimate of the 
relationship of y to x. The large sample mean or total of a; is then 
applied to the fitted relationship to obtain an estimate of the 
population mean or total of y. 

Updating a forest inventory is one application of double sam- 
pling. Suppose that in 1950 a sample of 200 quarter-acre plots in 
an 800-acre forest showed a mean volume of 372 cubic feet per 
plot (1,488 cubic feet per acre). A subsample of 40 plots, selected 
at random from the 200 plots, was marked for remeasurement m 
1955. The relationship of the 1955 volume to the 1950 volume as 
determined from the subsample was applied to the 1950 volume 
to obtain a regression estimate of the 1955 volume. 
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The subsample was as follows : 

1955 
volume 

1950 
volume 

1955 
volume 

1950 
volume 

(l/> (») (V) (x) 

370 280 550 430 
290 240 550 460 
520 410 520 400 
490 360 420 390 
530 390 490 340 
330 220 500 420 
310 270 610 470 
400 340 460 350 
450 360 430 340 
430 360 510 380 
460 400 450 370 
480 380 380 300 
430 350 430 290 
500 390 460 340 
640 480 490 370 
660 520 560 440 
490 400 580 480 
510 430 540 420 
270 
380 

230 
270 Total ..18,820 14,790 

420 330 
530 390 Mean . .470.50 369.75 

Xy^ = 9,157,400 
5 a;2 zrr 5,661,300 
Xxy = 7,186,300 

A plotting of the 40 pairs of plot values on coordinate paper 
suggested that the variability of y was the same at all levels of x 
and that the relationship of t/ to a; was linear. The estimator 
selected on the basis of this information was the linear regression 
yji¿ = a -}- bX. Values needed to compute the linear-regression 
estimate and its standard error were as follows : 

Large-sample data (indicated by the subscript 1) : 
ni = Number of observations in large sample = 200 
N = Number of sample units in population = 3,-200 
Xi = Large sample mean of cc == 372 ^^ 

* Small-sample data (indicated by the subscript 2) : 
712 = Number of observations in subsample = 40 
^2 = Small sample mean of y = 470.50 
ÍC2 = Small sample mean of x = 369.75 

SS, 
=( 

212/2 
712 ■)=(»• 

157,400 (18,820)2 
40 ")- 

302,590.0 
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SS.  = (xx^ - ^) = (5,661,300 - ílíf^) = 192,697.5 

SP^ = [xxy - ^^^) = (7,186,300 - (18,820) a4,790)>j 

=    227,605.0 
2        _ SS, _   302,590 rjrr.nrjc. 

'y     - (n, - 1) - 4Ö^rr - ^'^58.72 

The regression coefficient (&) and the squared standard devia- 
tion from regression (s^.a,) are ^' 

, _ÄP^ _ 227,605.0 
^ - ÄS,  - 192,697.5 - ^'^^ 

(SS       i^l^\     /" 302 590 0       (227,605.0) n ^   .     V^-^--    SS.    j     (,302,590.0-    ^^^^^g^^   j 
^^-  -        (712-2)        - 4Ö^='2 -8«8.2617 

And the regression equation is 

VBd = y2 + b {X — X2) 
= 470.50 + 1.18 (X - 369.75) 
= 34.2 + 1.18X 

Substituting the 1950 mean volume (372 cubic feet) for X gives 
the regression estimate of the 1955 volume. 

y^a = 34.2 + 1.18(372) = 473.16 cubic feet per plot 

Standard error.—The standard error of yRd when the linear- 
regression estimator is used in double sampling is 

s-   - L .M . ixt-x2y\ /,    MTV7Î    M 

/—"r.lT HI   (^^^-OO - 369.75)^\ /       '^ 
= ^888.2617 (^^ + 192,697.5 ) V   ~ 200J 

7,758.72 /^        200 \ 7,758.72 / 
+      200      V^ 3,200y 

= 7.36 cubic feet 

Had the 1955 volume been estimated from the 40 plots without 
taking advantage of the relationship of y to x, the estimated mean 
would have been 

^ 18,820 ^ ^rjQ^Q ç^^jç fgg^ (instead of 473.16) 
40 
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The standard error of ^ would have been 

-NSF^) 
_ /7,758.72 /. _ 40 \ 
- \ 40 V 3,200y 
= 13.84 cubic feet (compared to 7.36) 

Double sampling with other regression estimators.—^If the 
mean-of-ratios estimate is deemed appropriate, the individual 
ratios (r< = Vi/Xi) are computed for the n2 observations of the 
subsample. The mean of ratios estimate is then 

y^a = Rxi 

with standard error 

Where: Ä  =^ 

"" = V--(S){'-S)+ï('-t) 
Xri 

Xt — Mean x for the large sample of n^ observations 

Sr^ z= Variance of r for the subsample 

Xr^ 
%2 

"~ ^2 —   1 

The ratio-of-means estimate, when appropriate, is 

VRd = Rxx 

with standard error 

s« V('-a(l)'C'^"T''-)+f('-t) 
Where : R  = y2/x2 

Sy^ = Variance of y in the subsample. 

s/ = Variance of x in the subsample. 
s„- = Covariance of y and x in the subsample. 
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Sampling When Units are Unequal in Size 
(Including PPS Sampling) 

Sampling units of unequal size are common in forestry. Planta- 
tions, farms, woodlots, counties, and sawmills are just a few of 
the natural units that vary in size. Designing and analyzing 
surveys involving unequal-sized units can be quite tricky. Two 
examples will be used to illustrate the problem and some of the 
possible solutions. They also illustrate the very important fact 
that no single method is best for all cases and that designing an 
efficient survey requires considerable skill and caution. 

Example No, 1.—As a first example, suppose that we want to 
estimate the mean milling cost per thousand board feet of lumber 
at southern pine sawmills in a given area. Available for planning 
the survey is a list of the 816 sawmills in the area and the daily 
capacity of each. The cost information is to be obtained by per- 
sonal interview. 

In sampling, as in most other endeavors, the simplest approach 
that will do the job is the best; complex procedures should be 
used only when they offer definite advantages. On this principle 
we might first consider taking a simple random sample of the 
mills, obtaining the cost per thousand at each, and computing the 
arithmetic average of these values. Most foresters would reject 
this procedure, and rightly so. The design would give the same 
weight to the cost for a mill producing 8,000 feet per day as to 
the cost for one cutting 50,000 feet per day. As a result, one thou- 
sand feet at the small mill would have a larger representation in 
the final average than the same volume at the large mill, and 
because cost per thousand is undoubtedly related to mill capacity, 
the estimate would be biased. 

An alternative that would give more weight to the large mills 
would be to take a random sample of the mills, obtain the total 
milling cost (i/i) and the total production in MBF (Xi) at each, 
and then use the ratio-of-means estimator: 

M f        -MrT^-ry     Total cost at all sampled mills _^ 
Mean cost per MBi? _ ^^^^j production at all sampled mills " Xx, 

This must also be rejected on the grounds of bias. The ratio-of- 
means estimator is unbiased only if the ratio oiytox is the same 
at all levels of x. In this example, a constant ratio oí y to x means 
that the milling cost per thousand is the same regardless of mill 
size—an unlikely situation. 

An unbiased procedure and one that would be appropriate in 
this situation is sampling with probability proportional to size 
(known as pps sampling). The value to be observed on each 
sample unit would be the milling cost per thousand board feet of 
lumber. Selection of the units with probability proportional to size 
is easily accomplished. 

First, a list is made of all of the mills along with their daily 
capacities and the cumulative sum of capacities. 
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Mill No. 
1 . 
2 . 
3 . 
4 . 

814 
815 
816 

DaUy Cumvlative 
capacity (MBF) sum 

10 10 
27 37 

8 45 
12 57 

13 
21 
11 

12,210 
12,231 
12,242 

12,242 

Next, numbers varying in size from 1 up to the cumulative sum 
for the last mill on the list (12,242) are selected from a table of 
random digits. A particular mill is included in the sample when a 
number is drawn which is equal to or less than the cumulative 
sum for that mill and greater than the cumulative sum for the 
preceding mill. Thus, given a random number of 49 we would 
select mill number 4 ; for 37 we would select mill number 2 ; for 
12,238 we would select mill number 816. An imi)ortant point is 
that sampling must be with replacement (i.e., a given mill may 
appear in the sample more than once) ; otherwisGj sampling will 
not be proportional to size. 

After the sample units have been selected and the unit values 
(Vi = milling cost per thousand) obtained, the mean cost per 
thousand and the standard error of the mean are computed in the 
same manner as for simple random sampling with replacement. 

Given the following ten observations : 
Milling coat Milling coat 

Mill per MBF 
(dollars) 

Mitt per MBF 
(doUara) 

73  .    12 329         11 
541  .    13 804      17 
126  .    18 126      18 
134  .    14 427      12 
423  .    16 
703  .    21 Total     152 
The estimated mean is 

152 
y = -j^ = 15.2 dollars per thousand 

The standard error of the mean is 

TT        ^Vi' - 
{XViV 

n(n—l) 

2,408 
(152)2 

10 
10(9) 

= 1.04 



ELEMENTAKY FOREST SAMPLING 49 

Another alternative is to group mills of similar size into strata 
and use stratified random sampling. If the cost per thousand is 
related to mill size, this procedure may be slightly biased unless 
all mills m a given stratum are of the same size. With only a small 
withm-stratum spread in mill size, the bias will usually be trivial. 

A further refinement would be to group mills of similar size and 
use stratified random sampling with pps sampling of units within 
strata. 

Example No. ^.—-Now, consider the problem of estimating the 
total daily production of chippable waste at these mills. Assume 
again that we have a list of the mills and their daily capacities. 

We might first consider a simple random sample of the mills 
with the unit observation being the mean daily production of 
chippable waste at the selected mills. The arithmetic average of 
these observations multiplied by the total number of mills would 
give an estimate of the total daily production of chippable waste 
by all mills. This estimate would be completely unbiased. How- 
ever, because the mills vary greatly in daily capacity and because 
total waste production is closely related to total lumber produc- 
tion, there will be a large variation in chippable waste from unit 
to unit. This means that the variance among units will be large 
and that many observations may be needed to obtain an estimate 
of the desired precision. The simple random sample, though un- 
biased, would probably be rejected because of its low precision. 

^ The ratio-of-means estimator is a second alternative. In this de- 
sign a simple random sample would be selected and for each mill 
included in the sample we would observe the mean daily produc- 
tion of chippable waste (Vi) and the mean daily capacity of the 
mill in MBF (Xi). The ratio of means 

XXi 

would give an estimate of the mean waste production per MBF, 
and this ratio multiplied by the total capacity of all mills would 
estimate the total daily production of chippable waste. It has been 
pointed out that the ratio-of-means estimator is unbiased if the 
ratio of 2/ to a; is the same at all levels of x. Studies have shown 
that although the ratio of waste to lumber production varies with 
log size, it is not closely related to mill size—hence the bias, if 
any, in the ratio-of-means estimator would be small. Past experi- 
ence suggests that the variance of the estimate will also be small, 
making it preferable to the simple arithmetic average previously 
discussed. Note that this is a case where a slightly biased estima- 
tor of high precision might be more suitable than an unbiased 
estimator of low precision. 

Here again, pps sampling would merit consideration. It would 
give unbiased estimates of moderately good precision. Stratified 
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siönpling with units grouped according to size is another possi- 
bility as is the combination of stratification with pps sampling 
within strata. Among the acceptable alternatives no blanket rec- 
ommendation is possible. The best choice depends on many factors, 
chief among them being the form and closeness of the relationship 
between chippable waste (Vi) and mill capacity (Xi). 

Two-Stage Sampling 
In some forest sampling, locating and getting to a sampling unit 

is expensive, while measurement of the unit is relatively cheap. 
It seems logical in these circumstances to make measurements on 
two or three units at or near each location. This is called two-stage 
sampling, the first stage being the selection of locations, and the 
second stage being the selection of units at these locations. The 
advantage of two-stage sampling is that it may yield estimates of 
a given precision at a cost lower than that of a completely random 
sample. 

To illustrate the situation and the methods, consider a land- 
owner whose 60,000 acres of timberland are subdivided into 
square blocks of 40 acres with permanent markers at the four 
corners of each block. A sample survey is to be made of the tract 
in order to estimate the mean sawtimber volume per acre. Sample 
units will be square quarter-acre plots. These plots will be located 
on the ground by measurements made with reference to one of 
the corners of the 40-acre blocks. 

Travel and surveying time to a block comer are quite high, 
hence it seems logical, once the block comer is located, to find and 
measure several plots in that block. Thus, the sampling scheme 
would consist of making a random selection of n blocks and then 
randomly selecting m plots within each of the selected blocks. In 
sampling language, the 40-acre blocks would be called primary 
sampling units (primaries) and the quarter-acre plots secondary 
sampling units (secondaries). 

If 2/<y designates the volume of the /*»» sampled plot (/ = 1... m) 
on the i^ sampled block, the estimated mean volume per plot (sym- 
bolized in two-stage sampling by y) is 

i: s Vu 
y = '=' '=' mn 

The standard error of the estimated mean is 

Si = Vir[-=(^-F) + ^(i-f)] 
Where : n = Number of primaries sampled. 

N = Total number of primaries in the population. 
m — Number of secondaries sampled in each of the pri- 

maries selected for sampling. 
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M = Total number of secondaries in each primary. 

SB^ = Sample variance between primaries when sampled by 
m secondaries per primary (computation procedure 
given below). 

Sw^ = Sample variance among secondaries within primaries 
(computation procedure given below). 

The terms SB^ and Sw^ are computed from the equations 

t-l\i=l / _   V=l   3 = 1 / 

„   2 _   V^ W^ 
OB          in- 1) 

t=iV=i     / 

n{m — 1) 

Since Vij is the observed value of a secondary unit,   S Vu is the 
3=1 

total of all secondary units observed in the i^ primary (or the 
n        m 

primary total), and  S   S Va is the grand total of all sampled 
t=l     3=1 

secondaries. Hence, the above equations, expressed in words, are 

ls2) \      / [s (Secondaries)]^ \ 
ies    /      I Total no. of        J 
lary/       \secondaries sampled/ 

Sw^ = 

in 
I 2 (Primary totals^) 

I    No. of secondaries 
\sampled per primary/  

(n - 1) 

/ ¿ (Primary totals^) \ 
S (Secondaries^) - I    NO. of secondaries    ) 
 \ sampled per primary / 

n{m — 1) 

Readers familiar with analysis of variance procedures will recog- 
nize SB^ and Sw^ as the mean square between and within primaries 
respectively. 

The computations are not so difficult as the notation might sug- 
gest. Suppose we had sampled m = 3 quarter-acre plots (second- 
aries) within each of w = 4 blocks (primaries) and obtained the 
following data: 



52     AGRICULTURE HANDBOOK 232, U.S. DEPT. OF AGRICULTURE 

Block Plot 5ecafi<{ari/ Prima¿ry 
(secondary) voltte« totola 

rctt&io feet) (cubic feet) 

1 1 147 
2 180 
3 206 533 

2 1 312 
2 265 
3 300 877 

3 1 220 
2 280 
3 210 710 

4 1 250 
2 232 
3 185 667 

2,787 2,787 
The estimated mean per plot is 

^ ^ (147 + 180 + ... + 185) ^ 2^ ^ 232 25 ^„^.^ ^^^ ^^^ p,^^ 

To get the standard error of # we first compute SB^ and STT^. 

(533^ -}-...-f 667^)       (2,787)^ 
,._ 3 (3) (4) 
''  - (4-1) 

667,402.3333 - 647,280.7500 

Sw' 

3 
= 6,707.1944 

(533^ + ... + 667^) 
3 

(1472 +1802+ ...+1852 y 

(4) (3-1) 
675,463.0000 - 667,402.3333 

~ 8 
= 1,007.5833 

Since the total number of 40-acre blocks in the 60,000 acres is 
N = 1,500 and the total number of quarter-acre plots in each 
40-acre block is ilf = 160, the estimated standard error of the 
mean is 

= ^/(3^4)[6.70'^•l«44(l-ïJ5ö) 
+ (4) 

4 
(1,007.5833)/ 3 X] 

1,500 V        160/J 

^ [6,689.3085 + 2.6365] 

= 23.61 
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The estimated mean per plot is 232.25 cubic feet. The standard 
error of this estimate is 23.61 cubic feet. As the plots are one- 
quarter acre in size, the estimated mean volume per acre is 4 (#) 
= 929 cubic feet. The standard error of the mean volume per acre 
is 4(sj) = 94.44. 

An estimate of the total volume and its standard error can be 
obtained either from the mean per plot or mean per acre volumes 
and their standard errors. The mean per plot is 232.25 it 23.61. 
To expand this to the total, each figure must be multiplied by the 
number of quarter-acre plots in the entire tract (= 240,000) ; the 
estimated total is 

55,740,000 ± 5,666,400. 

The mean per acre is 929 ± 94.44. To expand this, each figure 
must be multiplied by the total number of acres in the tract 
(= 60,000). Thus, the estimated total is 

55,740,000 ± 5,666,400 as before. 

Small sampling fractions.—If the number of primary units 
sampled {n) is a small fraction of the total number of primary 
units (N)y the standard error formula simplifies to 

mn 

This reduced formula is usually applied where the ratio n/N is 
less than 0.01. In the example above, the sampling fraction for 
primaries was 4/1,500, so we could very well have used the 
short formula. The estimated standard error would have been 

-4 MOT^^V 558:9329 

= 23.64 (instead of 23.61 by the longer formula). 

When n/N is fairly large but the number of secondaries (m) 
sampled in each selected primary is only a small fraction of the 
total number of secondaries (M) in each primary, the standard 
error formula would be 

'.=^/i[•.■(-^)+=r] 
Sample size for two-stage sampling,—For a fixed number of 

sample observations, two-stage sampling is usually less precise 
than simple random sampling. The advantage of the method is 
that by reducing the cost per observation it permits us to obtain 
the desired precision at a lower cost. .       j- 

Usually the precision and cost both increase as the number ot 
primaries is increased and the number of secondaries (m) per 
sampled primary is decreased. The cost may be reduced by taking 
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fewer primaries and more secondaries per primary, but precision 
usually suffers. This suggests that there is a number (m) of sec- 
ondaries per primary that will be optimum from the standpoint 
of giving the greatest precision for a given amount of money. The 
value of m that is optimum depends on the nature of the popula- 
tion variability between primaries and among secondaries within 
primaries, and on the relationship between the cost per primary 
and the added cost per secondary. 

The population variability between primaries is symbolized by 
Ö/2 and the variability within primaries by on^. Note that these 
are population values, not sample values. Occasionally we will 
have some Imowledge of ar^ and ou^ from previous work with the 
population. More often, it will be necessary to take a preliminary 
sample to estimate the population variabilities. From this pre- 
sample, we compute SB^ and Sw^ according to the formulae in the 
discussion of the error of a two-stage sample. Then our estimates 
of the population variability within and between primaries are 

SB^ - Sir" 

lit/ 

The cost of locating and establishing a primary unit (not count- 
ing overhead costs) is symbolized by Cp. The additional cost of 
getting to and measuring a secondary unit after the primary has 
been located is symbolized by Cs- 

Given the necessary cost and variance information, we can 
estimate the optimum size of m (say rrio) by 

-mm 
If mo is greater than the number of secondaries per primary (M), 
the formula value is ignored and m«, is set equal to M. 

Once rrio has been estimated, the number of primary units (with 
rrio secondaries per primary) needed to estimate the mean with a 
specified standard error (D) is 

(•^^^) 

"'+^"'+•¿0 
Where : N = Total number of primaries in the population. 

M = Total number of secondaries per primary. 
Numerical example.—Suppose that we wish to estimate a popu- 

lation mean with a standard error of 10 percent or less. We have 
defined the population as being composed of N = 1,000 primaries 
with M = 100 secondaries per primary. 
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As we know nothing of the variability between or within these 
primaries nor about the costs, we take a preliminary sample 
consisting of eight primaries with two secondaries per primary. 
Results are as follows: 

Data from preliminary survey 

Observed values Primary 
Primary of secondaries total 

1   34 42 76 
2   36 17 53 
3   41 56 97 
4   62 40 102 
5   82 94 176 
6   16 38 54 
7   22 41 63 
8   93 50 143 

Total = 764 

From this preliminary sample, we compute 

V = 981.8571 

Sw^ = 248.2500 

. = ^ = 47.75 

Therefore, the estimates of the population variances between and 
within primaries are 

0„2 _ s^2 _ 248.25 
3 _ sl^^^ _ 981.8571 - 248.2500 ^   ^ 

"^^  -        m        ~~ 2 

Assume also that the preliminary sample yields the following cost 
estimates : 

Cp = $14.00 
c, = $ 1.20 

Then our estimate of the optimum number of secondaries to be 
observed in each primary is 

m< 

__    //248.25    \ /14.00\ 
-\\ 366.8036 y V 1.20/ 

= V (.6768) (11.6667) 

= V7.8960 
= 2.8 
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Since we can't observe a fraction of a unit, we must now decide 
whether to take two or three secondaries per primary. To do this, 
we estimate the number of primaries needed for an m of 2 and for 
an m of 3, compute the cost of the two alternatives and select the 
less expensive one. 

Our preliminary sample gave an estimate of the mean of 47.75 
and, since we have specified a standard error of 10 percent, this 
means we want D = (0.10) (47.75) = 4.775 or 4.8. 

If m = 2, the number of primaries needed for the desired pre- 
cision would be 

_ 490.9286 
~   23.4093 

= 20.97 

or, n = 21 

There will be 21 primaries at a cost of $14 each and 2(21) = 42 
secondaries at a cost of $1.20 each, so that the total survey cost 
(exclusive of overhead) will be $344.40. 

If m = 3, the number of primaries will be 

248.25 > 

(366.8036+2á|?5) 

(4.8)^+^(366.8036+^) 

449.5536 ^ ^^^^0 
~"   23.4093 

or, n = 20 

The cost of this survey will be 

20(14.00) +60(1.20) =352.00 

As the first alternative gives the desired precision at a lower cost, 
we would sample n = 21 primaries and m = 2 secondaries per 
primary. 

Systematic arrangement of secondaries.—Though the potential 
economy of two-stage sampling has been apparent and appealing 
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to foresters, they have displayed a reluctance to select secondary 
units at random. Primary sampling points may be selected at ran- 
dom, but at each point the secondaries will often be arranged in 
a set pattern. This is not two-stage sampling in the sense that 
we have been using the term, though it may result in similar in- 
creases in sampling efficiency. It might be called cluster sampling, 
the cluster being the group of secondaries at each location. The 
unit of observation then is not the individual plot but the entire 
cluster. The unit value is the mean or total for the cluster. Esti- 
mates and their errors are computed by the formulae that apply 
to the method of selecting the cluster locations. 

Within each primary the clusters should be selected so that 
every secondary has a chance of appearing in the sample. If cer- 
tain portions of the primaries are systematically excluded, bias 
may result. 

Two-Stage Sampling With  Unequal-Sized Primaries 

The two-stage method of the previous chapter gives the same 
weight to all primaries. This hardly seems logical if the primaries 
vary greatly in size. It would, for example, give the same weight 
to a 10,000-acre tract as to a 40-acre tract. There are several modi- 
fied methods of two-stage sampling which take primary size into 
account. 

Stratified two-stage sampling.—One approach is to group equal- 
sized primaries into strata and apply the standard two-stage meth- 
ods and computations within each stratum. Population estimates 
are made by combining the individual stratum estimates accord- 
ing to the stratified sampling formulae. This is a very good design 
if the size of each primary is known and the number of strata is 
not too large. If the number of primaries is small, it may even be 
feasible to regard each primary as a stratum and use regular 
single-stage stratified sampling. 

Selecting primaries with probability proportional to size.—An- 
other possibility is to select primaries with probability propor- 
tional to size (pps) and secondaries within primaries with equal 
probability. Selection of primaries must be with replacement, but 
secondaries can be selected without replacement. A new set of 
secondaries should be drawn each time that a given primary is 
selected so that a secondary that was selected during one sampling 
may again be selected during some subsequent sampling of that 
primary. 

After the observations have been made, the sample mean (Vi) 
is computed for each of the n primaries included in the sample. 
These primary means are then used to compute an estimate of the 
population mean by 
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The standard error of the mean is 

n(n — 1) 

If only one secondary is selected in each selected primary, this 
procedure becomes identical to simple random sampling. 

If there is any relationship between the primary size and its 
mean, pps sampling may give estimates of low precision. The pre- 
cision can be improved by combining stratified two-stage sampling 
and pps selection of primaries. Primaries of similar size are 
grouped into strata and within each stratum selection of primaries 
is made with probability proportional to size. Strata means and 
variance are computed by the formulae for two-stage sampling 
with pps selection of primaries. 

Selection of primaries with equal probability.—The procedures 
that have been discussed so far require reasonably accurate infor- 
mation about the size of each primary in the population—infor- 
mation that is often lacking. An alternative technique requires 
knowledge only of the size of the primaries actually included in 
the sample and of the total number of primaries in the population. 
The method involves selection of n primaries and mi secondaries 
within the i^ selected primary. At each level, sampling is with 
equal probability and without replacement. The number of second- 
aries sampled (mi) may vary or remain constant. The sample 
primary mean (yi) is computed for each selected primary and 
from these the population mean is estimated as 

. t=i 

Ci^') 
where : n = Number of primaries sampled. 

yt = Mean per secondary in the i^ sampled primary. 
Mi = Total number of secondary units in the t**» sampled 

primary (this can be an actual or a relative measure 
of size). 

The standard error of this estimate is 

^^-yy¡n-i\{%M,y "*"(5!r<)2 - JXMdJxTd) V~"ñ) 

where : n = Number of primaries sampled. 
N = Total number of primaries. 
T, = (Mm) 
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For an illustration of the computations, suppose that we wished 
to estimate the mean board-foot volume on a population of 426 
woodlots. Four woodlots (primaries) are selected at random, and 
withm each woodlot the board-foot volume is measured on two 
randomly selected one-fifth-acre plots. For each woodlot selected, 
the acreage is also determined. Since one-fifth-acre plots were 
used, the value of M< for the i*^ woodlot will be 5 times its acreage. 
Assume the observed values are as follows : 

Primary 
SampUd meana Woodlot 
woodlot pi^,^ values (Vi) acreage M^ Mi^i - T^ 

Bd. ft. Bd. ft. 

1   620 740 680 110 550 374,000 
2   585 475 530 26 130 68,900 
3   590 730 660 54 270 178,200 
4   960 820 890 60 300 267,000 

1,250 888,100 
Then 

^ "^ ^{%MÍ = ^^1250 == ^^^'^^^^^^^^^^*P^^fifth-acre plot. 

The values needed to compute the standard error are 

XMi^ r= 482,300 %T^ = 247,667,450,000 
XMiTi = 342,871,000 

(5M<)2 = 1,562,500 i^Ti)^ = 788,721,610,000 
(XMi) (%Ti) = 1,110,125,000 

Hence, 

<î._7in48    //4Y   482,300  ,   247,667,450,000 
Sy - au.48 VV3Al,562,500 "^ 788,721,610,000 

(2) (342,871,000) /    fpc    \ 
1,110,125,000 Vignoredy 

= 710.48 V0.00662295 
= 57.82 board feet. 

This estimate of the mean will be slightly biased if there is any 
relationship between the primary size and the mean per unit in 
that primary. The bias is generally not serious for large samples 
(more than 30 primaries). 

An unbiased equaUvrohahility estimator.—If the bias incurred 
by use of the above estimator is expected to be large, an unbiased 
estimate can be obtained. In addition to the information required 
for the biased procedure, we must also know the total number of 
secondaries (M) in the population. As in the case of the biased 
estimator, n primaries are selected with equal probability and 
within each primary mi secondaries are observed. The mean per 
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unit (Vi) is computed for each primary and used to estimate the 
population mean 

The standard error of the mean is 

c  -K   /^   '^'^ n        (.       n\ 
^'~ M\ n(n-l) V^~ Ñ) 

Now, assume that the 426 woodlots of the previous example 
have a total area of 26,412 acres. Then, because the secondary 
units are one-fifth acre in size, the total number of secondaries in 
the population is M = 132,060. With the same sample data the 
unbiased estimate of the population mean per unit would be 

^ = 4(isloeo) (888,100) z= 716.21 board feet per plot. 

The standard error is 

426      / (^'^^'ÖÖÖ' + . . • + 267,0002) - (888400)^ 

132,060 \ 4(3) 
/    fpc   \ 
\ ignored/ 

= 0.003226 V4,207,253,958 
= 209.25 board feet. 

The standard error of the unbiased estimate (209.25) as com- 
pared to that of the biased estimate (57.82) shows why the latter 
is often preferred. But, if the size of all primaries is known, the 
bias of the biased estimator can be reduced and the precision of 
the unbiased estimator increased by grouping similar sized pri- 
maries and using these estimating procedures in conjunction with 
stratified sampling. 

Systematic Sampling 

As the name implies, and as most foresters know, the units in- 
cluded in a systematic sample are selected not at random but 
according to a pre-specified pattern. Usually the only element of 
randomization is in the selection of the starting point of the pat- 
tern, and even that is often ignored. The most common pattern 
is a grid having the sample units in equally spaced rows with a 
constant distance between units within rows. 
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To the disdain of some statisticians, the vast majority of forest 
surveys have been made by some form of systematic sampling. 
There are two reasons: (1) the location of sample units in the 
field is often easier and cheaper, and (2) there is a feeling that 
a sample deliberately spread over the entire population will be 
more representative than a random sample. 

Statisticians usually will not argue against the first reason. 
They are less willing to accept the second. They admit the pos- 
sibility, sometimes even the probability, that a systematic sample 
will give a more precise estimate of the true population mean 
(i.e., be more representative) than would a random sample of the 
same size. They point out, however, that estimation of the samp- 
ling error of a systematic survey requires more knowledge about 
the population than is usually available, with the result that the 
sampler can seldom be sure just how precise his estimate is. The 
common procedure is to use random sampling formulae to com- 
pute the errors of a systematic survey. Depending on the degree 
and the way in which the population falls into patterns, the pre- 
cision may be either much lower or much higher than that sug- 
gested by the random formulae. If there is no definite pattern in 
the unit values in the population, the random formulae may give 
a fair indication of the sampling precision. The difficulty is in 
knowing which condition applies to a particular sample. 

The well-known procedure of superimposing two or more sys- 
tematic grids, each with randomly located starting points, does 
provide some of the advantages of systematic sampling along with 
a valid estimate of the sampling error. In this procedure each grid 
becomes, in effect, a single observation and the error is estimated 
from the variability among grids. Locating plots in the field be- 
comes more difficult as the number of grids increases, however, 
and it would seem as though the advantage of representativeness 
could be obtained more easily and efficiently by stratified sampling 
with small blocks serving as strata. 

Despite the known hazards, foresters are not likely to give up 
systematic sampling. They will usually take the precaution of 
running the lines of plots at right angles rather than parallel to 
ridges and streams. In most cases, sampling errors will be com- 
puted by formulae appropriate to random sampling. Experience 
suggests that a few of these surveys will be very misleading, but 
that most of them will give estimates having precision as good 
as or slightly better than that shown by the random sampling 
formulae. Some statisticians will continue to bemoan the practice 
and a few of them will keep searching for a workable general solu- 
tion to the problem of error estimates (though at least one very 
eminent statistician doubts that a workable solution exists). 

SAMPLING METHODS FOR DISCRETE VARIABLES 

Simple Random Sampling—Classification Data 
Assume that from a large batch of seed 50 have been selected 

at random in order to estimate the proportion (p) that are sound. 
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Assume also that cutting or hammering discloses that 39 of the 50 
seeds were sound. Then our estimate (p) of the proportion that 
is sound is 

_ _ Number having the specified attribute 
^ ~ Number observed 

39 
- 50 
=: 0.78 

Standard error of estimate.—The estimated standard error of 
p is 

_    ¡pq-P) I.      ^ 

where : n =r number of units observed. 
In this example N is extremely large relative to n, and so the 

finite-population correction could be ignored 

Sp = Y 
(0.78) (1 - 0.78) 

(50 - 1) 
= 0.05918 

Confidence limits.—For certain sample sizes (among them, n 
= 50), confidence limits can be obtained from table 3, page 87. 
In this example we found that in a sample of ri = 50 seeds, 39 
were sound. The estimated proportion sound was 0.78 and, as 
shown in table 3, the 95-percent confidence limits would be 0.64 
and 0.88. For samples of 100 and larger the table does not show 
the confidence limits for proportions higher than 0.50. These can 
easily be obtained, however, by working with the proportion of 
units not having the specified attribute. Thus suppose that, in a 
sample oin = 1,000 seeds, 78 percent were sound. This is equiva- 
lent to saying that 22 percent were not sound, and the table shows 
that for n = 1,000 the 95-percent confidence interval for an ob- 
served fraction of 0.22 is 0.19 to 0.25. If the true population pro- 
portion of unsound seed is within the limits 0.19 and 0.25, the 
population proportion of sound seed must be within the limits 0.75 
and 0.81. 

Confidence intervals for large samples.—For large samples, the 
95-percent confidence interval can be computed as 

[^» + -t] 
Assume that a sample ofn = 250 units has been selected and that 
70 of these units are found to have some specified attribute. Then, 
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And, 

1(0 28) (0 72) 
Sp = J—   249     (ignoring the finite-population correction) 

= 0.02845 

Then, the 95-percent confidence interval 

= 0.28 zh [2(0.02845) +2¿o)] 
= 0.28 ± 0.059 
= 0.221 to 0.339 

Thus, unless a l-in-20 chance has occurred, the true proportion 
is somewhere within the limits 0.22 and 0.34. For a 99-percent 
confidence interval we would multiply Sp by 2.6 instead of 2. (For 
samples of n = 250 or 1,000, the confidence interval could, of 
course, be obtained from table 3. For this example the table gives 
0.22 to 0.34 as the limits.) 

The above equation gives what is known as the normal approxi- 
mation to the confidence limits. As noted, it can be used for large 
samples. What qualifies as a large sample depends on the propor- 
tion of items having the specified characteristic. As a rough guide, 
the normal approximation will be good if the common logarithm 
of the sample size (n) is equal to or greater than 

1.5-|-3(|P-0.5|) 

where : P = our best estimate of the true proportion of the popu- 
lation having the specified attribute. 

|P — 0.5| = the absolute value (i.e., algebraic sign ignored) of 
the departure of P from 0.5. 

Thus, if our estimate of P is 0.20 then \P — 0.5| is equal to 0.3 
and, if we are to use the normal approximation, the log of our 
sample size should be greater than 

1.5 + 3(0.3) =2.4 

Or n must be over 251 (2.4 = log 251). 
Sample size.—^Table 3 may also be used as a guide to the number 

of units that should be observed in a simple random sample to 
estimate a proportion with a specified precision. Suppose that we 
are sampling a population in which about 40 percent of the units 
have a certain attribute and we wish to estimate this proportion 
to within ±: 0.15 (at the 95-percent level). The table shows that 
for a sample of size 30 having p = 0.4 the confidence limits would 
be 0.23 and 0.60. Since the upper limit is not within 0.15 of 
p = 0.4, a sample of size 30 would not give the necessary pre- 
cision. A sample of % = 50 would give limits of 0.27 and 0.55. As 
each of these is within 0.15 or ^ = 0.4, we conclude that a sample 
of size 50 would be adequate. 
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If the table suggests that a sample of over 100 will be needed, 
the size can be estimated by 

n = ™ r-   for 95-percent confidence E ^1 
(4)(P)(1-P)   '   N 

1 
E^ _4_1. 

\  "f"     XT 

for 99-percent confidence 

(6.76) (P) (1 - P) '   N 

where : E = The precision with which P is to be estimated. 
N = Total number of units in the population. 

The table indicates that to estimate a P of about 0.4 to within 
E = ±1 0.05 (at the 95-percent confidence level) would require 
somewhere between 250 and 1,000 observations. Using the first of 
the above formulae (and assuming N = 5,000)  we would find, 

 T- = 357 (0.05)2 
(4) (0.4) (0.6)   '   5,000 

If we have no idea of the value of P, we will have to make a 
guess at it in order to estimate the sample size. The safest course 
is to guess a P as close to 0.5 as it might reasonably occur. 

How to select a seed at random.—If we were trying to estimate 
the proportion of trees in a stand having a certain disease, it 
would be difficult to select the individual trees at random and then 
locate them in the field for observation. In some populations, how- 
ever, the individuals themselves are randomly located or can easily 
be made so. A batch of seed is such a population. By thoroughly 
mixing the seed prior to sampling, it is possible to select a num- 
ber of individuals from one position in the batch and assume that 
this is equivalent to a completely random sample. Those who have 
sampled seed warn against mixing in such a manner that the light 
empty seeds tend to work together towards the top of the pile. 
The sample could be taken with a small scoop or a seed probe 
which picks up approximately the number of seed to be examined. 
As a precaution, most seed samplers will use a scoop that selects 
only a fraction of the desired number of seeds and will take 
samples from several places in the pile and combine them. 

Cluster Sampling for Attributes 
In attribute sampling the cost of selecting and locating an in- 

dividual is usually very high relative to the cost of determining 
whether or not the individual has a certain characteristic. Because 
of this, some form of cluster sampling is usually preferred over 
simple random sampling. In cluster sampling, a group of individ- 
uals becomes the unit of observation, and the unit value is the 
proportion of the individuals in the group having the specified 
attribute. 

In estimating the survival percent of a plantation it would be 
possible to choose individual trees for observation by randomly 
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selecting pairs of numbers and letting the first number stand for 
a row and the second number designate the tree within that row. 
But it would obviously be inefficient to ignore all of the trees that 
must be passed to get to the one selected. Instead, we would prob- 
ably make survival counts in a number of randomly selected rows 
and (assuming the same number of trees were planted in each 
row) average these to estimate the survival percent. This is a 
form of cluster sampling, the cluster being a row of planted trees. 

The germination percent of a batch of seed might also be esti- 
mated by cluster sampling. Here the advantage of clusters comes 
not in the selection of individuals for observation but from avoid- 
ing some hazards of germination tests. Such tests are commonly 
made in small covered dishes. If all the seeds are in a single dish, 
any mishaps (e.g., overwatering or fungus attack) may affect 
the entire test. To avoid this hazard, it is common to place a fixed 
number of seeds (one or two hundred) in each of several dishes. 
The individual dish then becomes the unit of observation and the 
unit value is the germination percent for the dish. 

When clusters are fairly large and all of the same size, the pro- 
cedures for computing estimates of means and standard errors 
are much the same as those described for measurement data. To 
illustrate, assume that 8 samples of 100 seeds each have been 
selected from a thoroughly mixed batch. The 100-seed samples are 
placed in 8 separate germination dishes. After 30 days, the follow- 
ing germination percentages are recorded : 

Dish No. 1123456781 Total 
Germination (pet.) | 84    88    86    76    81    80    85    84 |   664 

If Vi is the germination percent in the ¿*^ dish, the mean ger- 
mination percent would be estimated by 

=1         

n    ~   % 

The variance of v would be computed by 

(g^^y       ,..,  .  oo.  . ,  o..^       (664)2 ¿y,2_V=i    / (842 + 882 + . . . + 842) 
. 2   1=1 

(^ -  1) ~ 7 
= 14.5714 

Whence the standard error of p can be obtained as 

_    /14.5714 _ ^ gg (ignoring the finite-population correction) 



66     AGRICULTURE HANDBOOK 232, U.S. DEPT. OP AGRICULTURE 

Note that, in cluster sampling, n stands for the number of clusters 
sampled and N is the number of possible clusters in the population. 

As in simple random sampling of measurement data, a confi- 
dence interval for the estimated percentage can be computed by 
Student's t 

95-percent confidence interval = p ±t (s¿) 

Where: t = Value of Student's t at the 0.05 level with n — 1 
degrees of freedom. Thus, in this example, t would have 7 degrees 
of freedom and í 05 would be 2.365. The 95-percent confidence 
interval would be 

83.0 ± (2.365)  (1.35) = 83.0 ±: 3.19 
= 79.8 to 86.2 

Transformation of percentages.—If clusters are small (less 
than 100 units per cluster) or if some of the observed percent- 
ages are greater than 80 or less than 20, it may be desirable to 
transform the percentages before computing means and confidence 
intervals. The common transformation is arcsin VPercent. Table 
4, page 89, makes it easy to transform the observed percentages. 
For the data in the previous example, the transformed values 
would be 

Diah No. 

1 .. 
2 .. 
3 .. 
4 .. 
5 .. 

84 
88 
86 
76 
81 

66.4 
69.7 
68.0 
60.7 
64.2 

80 
85 
84 

63.4 
67.2 
66.4 

Total     526.0 

The mean of the transformed values is 

526.0 
8 = 65.75 

The variance of these values is 

(66.42 + . • . + 66.4^) 
(526)2 

= 8.1486 

And the standard error of the mean transformed value is 

s¿ = yj^^^^ = V1.0186 = 1.009 

So the 95-percent confidence limits would be (using ios for 7 df's 
= 2.365) 

CI = 65.75 ± (2.365) (1.009) =: 65.75 ± 2.39 
= 63.36 to 68.14 
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Referring to the table again, we see that the mean of 65.75 
corresponds to a percentage of 83.1. The confidence limits cor- 
respond to percentages of 79.9 and 86.1. In this case the trans- 
formation made little difference in the mean or the confidence 
limits, but in general it is safer to use the transformed values 
even though some extra work is involved. 

Other clvster-sampling designs.—If we regard the observed or 
transformed percentages as equivalent to measurements, it is easy 
to see that any of the designs described for continuous variables 
can also be used for cluster sampling of attributes. In place of 
individuals, the clusters become the units of which the population 
is composed. 

Stratified random sampling might be applied when we wish to 
estimate the mean germination percent of a seed lot made up of 
seed from several sources. The sources become the strata, each 
of which is sampled by two or more randomly selected clusters 
of 100 or 200 seeds. 

With seed stored in a number of canisters of 100 pounds each, 
we might use two-stage sampling, the canisters being primary 
sampling units and clusters of 100 seeds being secondaries. If the 
canisters differed in volume, we might sample canisters with 
probability proportional to size. 

Cluster Sampling for Attributes—Unequal-Sized Clusters 
Frequently when sampling for attributes, we find it convenient 

to let a plot be the sampling unit. On each plot we will count the 
total number of individuals and the number having the specified 
attributes. Even though the plots are of equal area, the total num- 
ber of individuals may vary from plot to plot; thus, the clusters 
will be of unequal size. In estimating the proportion of individuals 
having the attribute, we probably would not want to average the 
proportions for all plots because that would give the same weight 
to plots with few individuals as to those with many. 

In such situations, we might use the ratio-of-means estimator. 
Suppose that 2,4,5-T has been sprayed on an area of small scrub 
oaks and we wish to determine the percentage of trees killed. To 
make this estimate, the total number of trees (Xi) and the number 
of dead trees (Vi) is determined on 20 one-tenth-acre plots. 
Plot No. of No. of dead Plot No. of No. of dead 

trees (x^) trees T»,; trees (x^) trees (y^) 

1    15 11 13 26 16 
2     42 32 14 160 126 
3   .... ...     128 98 15 103 80 
4     86 42 16 80 58 
5     97 62 17 32 25 
6     8 6 18 56 44 
7     28 22 19 49 24 
8   .... 65 

71 
51 
48 

20   84 59 
9   .... 

10   .... ... .     110 66 Total . .  1,351 960 
11     63 58 
12   .... 48 32 Mean . 67.55 48.0 
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The ratio-of-means estimate of the proportion of trees killed is 

The estimated standard error of p is 

Where : Sy^ = Variance of individual y values. 
Sa,2 _: Variance of individual x values. 
Sy:j, = Covariance of y and x, 

n = Number of plots observed. 
In this example 

. 2  . 

(IP + 322 + . . . + 592) _ ^ 
 JÖ — = 892.6316 

1,3512 (152 -f 422 + . . . + 842) _ 
-?^ = 1,542.4711 19 

(960) (1,351) (11) (15) + (32) (42) + ... + (59) (84) - - 
20 

19 
= 1,132.6316 

With these values (but ignoring the fpc), 

(67.55)2 
= 0.026 

892.6316 + (0.7106)2 (1,542.4711) 
-2(0.7106) (1,132.6316) 

20 

As in any use of the ratio-of-means estimator, the results may 
be biased if the proportion of units in a cluster having a specified 
attribute is related to the size of the cluster. For large samples, 
the bias will often be trivial. 

Sampling of Count Variables 
Statistical complications often arise in handling data such as 

number of weevils in a cone, number of seedlings on a one-tenth- 
milacre plot, and similar count variables having no fixed upper 
limit. Small counts and those with numerous zeroes are especially 
troublesome. They tend to follow distributions (Poisson, negative 
binomial, etc.) that are diflScult to work with. If count variables 
cannot be avoided, the amateur sampler's best course may be to 
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define the sample units so that most of the counts are large and 
to take samples of 30 units or more. It may then be possible to 
apply the procedures given for continuous variables. 

In order to estimate the number of larvae of a certain insect 
in the litter of a forest tract, one-foot-square litter samples were 
taken at 600 randomly selected points. The litter was carefully 
examined and the number of larvae recorded for each sample. The 
counts varied from 0 to 6 larvae per plot. The number of plots on 
which the various counts were observed were 

Count      =0 1        23456 Total 
Number 
of plots    =   256      224      92      21      4      1      2 600 

The counts are very close to a Poisson distribution (see page 
6). To permit the applications of normal distribution methods, 
the units were redefined. The new units were to consist of 15 of 
the original units selected at random from the 600. There were 
to be a total of 40 of the new units, and unit values were to be 
the total larvae count for the 15 selected observations. The values 
for the 40 redefined units were 

14 13 16 13 13 14 15 12 
16 18 11 7 9 10 11    10 
12 14 13 14 14 13 9    17 
15 8 12 5 13 15 13    10 
12 12 20 10 9 14 15    13 

Total = 504 

By the procedures for simple random sampling of a continuous 
variable, the estimated mean (y) per unit is 

The variance (Sy^) is 

(504)2 
(142 4-162 + .. . + 132)- 

40 
Oy       — gg 

= 8.8615 

With correction for finite population ignored, the standard error 
of the mean {Sy) is 

^F 8615 
40 

= 0.47 
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The new units have a total area of 15 square feet; hence to 
estimate the mean number of larvae per acre the mean per unit 
must be multiplied by 

^?f«= 2,904 

Thus, the mean per acre is 
(2,904) (12.6) = 36,590.4 

The standard error of the mean per acre is 
(2,904) (0.47) = 1,364.88 

As an approximation we can say that unless a l-in-20 chance 
has occurred in sampling, the mean count per acre is within the 
limits 

36,590.4 ± 2(1,364.88) 
or, 

33,860 to 39,320 

SOME OTHER ASPECTS OF SAMPLING 

Size and Shape of Sampling Units 
The size and shape of the sampling unit may profoundly affect 

the cost of the survey, its precision, or both. No attempt will be 
made here to oifer an exhaustive study, but an example may illus- 
trate the problem and a general approach to its solution. 

Consider a preharvest inventory in a nursery containing 1,000 
beds of slash pine, each bed 500 feet long and 4 feet wide. Con- 
ventional practice in this nursery has been to sample the beds by 
observing the total number of plantable seedlings in a 1- by 4-foot 
sampling frame laid crosswise at five randomly chosen locations 
in each bed. The process is laborious and time consuming, totaling 
5,000 observations, or nearly a mile of bed. The nurseryman would 
like to know if a frame 6 inches wide would be better than the 
conventional 12-inch frame. 

One practical way to judge among sampling units is to compare 
the total cost of surveys made with each unit, with the restriction 
that both methods shall afford equal precision. For example,' if 
the cost per observation with the 6-inch frame is ííi, then for Ui 
observations the cost of the survey (exclusive of overhead costs, 
which are assumed to be the same for both size units) is 

Similarly, for the 12-inch frame, we can say 

C2 = 112^2 

3 For illustrative purposes the nursery survey will be treated as a simple 
random sample, thougrh the specification of a set number of plots in each bed 
makes it a stratified design. 
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Then the cost of the 6-inch frame relative to the cost of the 12- 
inch frame is 

Ci  fiidi 

If estimates of population variance Si^ and «2^ are available, vari- 
ance of the population totals (ignoring the fpc) may be written 

and 
"'-m 

m 
where : Ni and N2 = Number of units of each size in the popula- 
tion. Now if the two methods are to give equal precision for the 
estimate of total production, 

ST.' 

or, 

and, solving for n2 
«■(?)=*■ (Ï) 

This last quantity may be simplified by remembering that the total 
number of 6-inch units (Ni) is twice the total number of 12-inch 
units (N2) ; hence, 

/  ÍV2W   \ 
^^==l(2Ñ2pi?j^^ 

_ niS2^ 

If we substitute this value of fh in the relative cost formula given 
above 

C2      n2d2      / niS2^\. 

s^d2 

In this example, a special study showed Si^ and «2^ to be 134.1 and 
416.0 respectively, and the average times for locating the frame 
and making the count for each size of frame were found to be 
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di — 94.36 and d2 = 129.00. Substituting these values in the 
equation for relative cost, 

Ci^      4(134.1) (94.36) 
C2 ~ (416.0) (129.00) 

= 0.943 

This result indicates that the 6-inch frame is slightly more eflScient 
than the 12-inch frame. 

In more general terms the cost of method 1 relative to the cost 
of method 2 for a specified sampling error would be 

The same result is obtained by thinking in terms of the relative 
efficiency of the alternative procedures. As a measure of efficiency, 
statisticians commonly use the reciprocal of the product of the cost 
per unit and the squared coefficient of variation for the given 
sample unit. If the coefficient of variation is symbolized by C and 
the cost by d, the efficiency (U) is given by 

U = - 

The relative efficiency of two alternatives would then be 

U2_   (di){C^)\       U^   _(¿2)(C2)" 
Ui      (d2)(C2)2^'^' U2 "(di)(Ci)2 

In the previous example we had 
(k =   94.36 Si2 ^ 134 1 
dz = 129.00 §2^ = 416.0 

For the 6-inch frame the squared coefficient of variation is 

For the 12-inch frame the squared coefficient of variation would 
be 

The mean per unit for the 12-inch frame (^2) should be twice the 
mean per unit for the 6-inch frame, so that we can write 

^^'^   -(2iJ^-4^ 
Then the efficiency of the 12-inch frame relative to that of the 6- 
inch frame is 

U2 ^     94.36 (134.1M^) _ 4(94.36) (134.1) 
Ui      129.00 (416.0/4^i2)       (129.00) (416.0) 

= 0.943 
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As before, the 6-inch frame appears more efficient than the 12- 
mch frame. 

Estimating Changes 
Changes that have taken place in the characteristics of a forest 

population are often of as much interest as their present status. 
Periodic change in stand volume is, for example, a major concern 
of foresters. 

Estimating such changes usually requires sampling at the be- 
ginning and end of the period. The difference or some function of 
the difference between the two estimates is the estimated change. 
Ordinarily the same sampling method will be used each time, but 
that is not absolutely necessary. 

Temporary or permanent plots.—Estimating change by samp- 
ling at two different times always raises the question of temporary 
or permanent sample plots. That is, should an entirely new set of 
units be randomly selected for observation at each time, or should 
the same units be observed at both times? A third alternative is 
to have some temporary and some permanent plots in a double 
sampling system : a large sample of temporary plots with a sub- 
sample of permanent plots. 

The choice between temporary and permanent plots depends 
heavily on the degree of correlation that can be expected between 
the initial and final plot values. If a high positive correlation is 
expected, permanent plots should give the better precision. If the 
correlation is likely to be low or negative, temporary plots might 
be better. If the period is relatively short and if cutting or heavy 
mortality is unlikely, the correlation probably will be large and 
positive, favoring the use of permanent plots. Where large volume 
changes are likely to occur because of cutting, heavy mortality, 
or a very long time interval, the correlation will be small or even 
negative, favoring the use of temporary plots. 

If there is enough information on cost and variability, the ad- 
vantage of permanent plots with simple random sampling can be 
weighed by computing the relative cost (Re) of obtaining a given 
precision by the two methods. 

Ko =■ ■  
Cp(Si2+S22-25i2) 

where: Ct = Cost of locating and making a single measurement 
on a temporary plot. 

Cp = Total cost of locating, measuring, monumenting, re- 
locating, and remeasuring a permanent plot. 

Si^ z= Variance among individual plots at the time of the 
first measurement. 

S2^ = Variance among individual plots at the time of the 
second measurement. 

Si2 = Covariance between the first and second measure- 
ments on individual plots. 
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If Ra is greater than 1, permanent plots should be used. If R^ is 
less than 1, temporary plots will probably be better. Where re- 
measurements will be made several times, the average cost per 
permanent plot will be reduced, swinging the ratio more favor- 
ably towards permanent plots. 

Plot monumentation.—The question of kind and degree of plot 
monumentation has been hotly debated among the users of per- 
manent plots. Where any form of stand treatment is likely to 
take place between measurements, it is generally conceded that the 
plot location and form of monumentation should not be discernible 
to those who make the stand treatments. It is very difficult, if not 
humanly impossible, to avoid treating plot areas differently from 
nonplot areas. At the same time, if the monuments are too cleverly 
concealed, relocation costs will be increased and some plots may 
not be found at all. Because the difficulty of plot relocation is 
likely to be related to stand conditions that are in turn related 
to growth, failure to relocate plots could slightly bias the estimates. 

Sampling errors.—If the mean per unit at the time of the first 
measurement is ^i, and the mean per unit at the time of the second 
measurement is ^2» the estimated periodic change per unit is (^2 
-Vi)' 

With temporary plots, the standard error of the estimated 
change would be 

where Sy^^ and Sy^^ are the squared standard errors of the mean 
at the time of the first and second measurements. The method of 
computing s^j2 ^nd Sy^^ would be that appropriate to the particu- 
lar sampling method used. 

With permanent plots, the easiest procedure for computing the 
standard error is to work with the individual differences. Thus, if 
Vu stands for the first measurement of the i"» permanent plot and 
t/2< stands for the second measurement on that plot, then di = 
(2/2* -- Vu) ' The standard error of the mean difference is computed 
from the di values with the formula appropriate for the particu- 
lar sampling method. 

Examples.—The above computations will be illustrated for a 
simple random sample. 

Temporary Plots 

Initial observations: n = S 

Vu = 12, 24, 27,14,16,10, 21,30 

ai Vu = 154                 Vi = 19.25 

s,,2 = 53.9286             5,,2 ^ V ^ 6.74 
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Final observations: n = S 

Vm = 27,18, 22,33,14, 26,16, 24 
8 

S 2/2/ = 180 ^2 = 22.50 
3 = 1 

V ^ 40.0000 s^2^ = ^ = ^'^^ 

Then the estimated mean difference is 

(^2 - ^i) = (22.50 - 19.25) = 3.25 

The standard error of the mean difference is 

s^y^-y^^ = V6.74 + 5.00 

= 3.43 

Permanent Plots 
Permanent Plot No. 

1X3^5678      Sum     Mean 

Initial observations {yu)- 24 14 16 27 10 30 12 21 154 19.25 
Final observations {y^ù  26 18 22 27 14 33 16 24 180 22.50 

Differences ( i^i = 2/2i — 2/ii)    24604343   26   3.25 

The estimated mean difference is 

(^2 — yi) =U = 3.25 

The standard error of the mean difference is calculated from the 
di values with the formula for a simple random sample. 

(»-1) 

(22 4- 42 + . . . + 32) _ ^ 

= 3.0714 

1.62 a.= ^Ï = 0.6 

Design of Sample Surveys 
It has been the purpose of this handbook to treat only one seg- 

ment of the design of sample surveys, that of the sampling method 
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and associated computational procedures. These are the aspects 
of sampling that seem to be most troublesome to foresters. But 
several other phases of survey design also deserve attention. Some 
of the points that should be considered in planning a survey are 
summarized here. 

The objective must he stated.—Specifically, identify the param- 
eter to be estimated and the precision desired. An example of a 
lucid objective might be: "To estimate the number of plantable 
slash pine seedlings at the Riedsville Nursery. The estimate should 
be within 1 percent of the true number, with 95-percent confi- 
dence." Vague statements ("To study the results of spraying..." 
"To estimate the effectiveness of...") can and do result in an 
appalling waste of survey efforts. 

The population should he defined.—^What are the units consti- 
tuting the population? What are the unit values? What units are 
excluded from the population? Careful, accurate answers to these 
questions will forestall numerous difficulties at later stages. A 
generality worth repeating is that sampling design will be simpli- 
fied if the specifications for the units used to define the population 
are identical with those used in the sample. Even at that, the 
definition and specification may be difficult. It may be easy to de- 
fine a tree or a plot, but if a survey is to be made of farmers, 
pulpwood contractors, or seed orchards, the unit may be very hard 
to define. An attempt should be made to foresee the difficulties 
that might arise in classifying a unit as in or out of the popula- 
tion ; the borderline instances will be a constant source of trouble 
to enumerators and analysts. 

The data to he collected should he specified.—Special attention 
must be paid to getting all the data necessary to the objective. 
It is a moot question how far one should go in taking supplemen- 
tary data that is not pertinent to the main objective. Frequently 
cooperators and reviewers, sensing an opportunity to obtain in- 
formation on some pet project, will request that additional obser- 
vations be made "while you're there." Such requests must be 
carefully reviewed. "Free" information is not cheap if it is never 
used or has an adverse effect on the main objective of the survey. 

Measurement techniques must he prescribed.—The measurement 
procedures should be stated unambiguously. The detail needed will 
vary with the complexity of the measurements and the experience 
of the personnel, but in general it is better to be annoyingly spe- 
cific than trustingly vague. Terms such as merchantable top, over- 
story, undesirable, stocked, board-foot volume, and plantable 
should be precisely defined. 

The need for training and preliminary practice should be con- 
sidered. And proficiency tests are not unwarranted—even for the 
old hands who may have forgotten some of their earlier training 
or developed bad habits. 

The sampling units must be defined.—^Again, the totality of 
sampling units, however distributed, must comprise the popula- 
tion. If the unit is obvious, e.g., a sawmill, no particular trouble 
need arise. But if a variety of units are possible, a search of litera- 
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ture will frequently uncover some profitable experience; if not, 
re uirid optimum size and shape of sampling unit may be 

The sampling method must be descnbed.—This handbook out- 
lines a number of methods that have been found useful in forestry 
1 nought, experience, and a review of literature will help in de- 
ciding which method is most appropriate for a particular situation. 
Ihe method of selecting the sample units should be carefully 
stated, and so should the procedure of locating the units in the 
held. Saying that a two-stage design will be used with primaries 
and secondaries selected at random is not enough. How will ran- 
domization be accomplished? And how will the unit be located in 
the field? The possibilities of and antidotes for bias in locating 
units deserve some thought. Timber cruisers will, for example, 
tend to veer away from dense brush and openings when locating 
plots by hand compass and pacing. House-to-house interviewers 
have been known to neglect top-floor apartments and homes with 
barking dogs. 

At this stage it is also well to think out the procedures to be 
used for estimating the parameters and sampling errors. Collect- 
ing data and then asking someone how to use it is a good way to 
lose friends and waste survey money. 

The sample size must be prescribed,—Once the desired pre- 
cision, choice of sampling unit, and method of sampling have been 
stated it is time to think of the size of sample. The sample should 
be just large enough to give the specified precision, and no larger. 
If the requisite information on costs and variances is available, 
this decision should be made prior to the start of field work. In 
the absence of such information, a preliminary survey may be 
necessary. 

Possible problems of data should be considered.—If the preced- 
ing steps are meticulously followed, problems arising at the data- 
collection stage are usually those of organization and personnel. 
The greatest single stumbling block is the common failure of 
supervisors to continue training and checking field crews or to 
provide for editing of field forms. Some organizations find it 
worthwhile to make punched-card sorts to check for recording 
mistakes such as trees that are 3 inches in d.b.h. and have 14 logs 
(instead of a 14-inch tree with 3 logs). 

Data processing should be planned.—In most cases, procedures 
for computation and analysis are fixed by the choice of sampling 
methods. In organizing the computing, there may be some extra- 
ordinary considerations that merit early attention. If the volume 
of data is small, computing may be readily absorbed in the daily 
routine. If the volume is large, special staffing and special equip- 
ment may be desirable. If, for example, the analysis is to be on 
electronic computers, it would be advisable to become familiar 
with the special requirements necessary to electronic computing, 
such as data format for keypunching, availability of programs, 
and cost of programming. 
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PRACTICE PROBLEMS IN SUBSCRIPT AND 
SUMMATION NOTATION 

Values of the Variable Xij 

j Classification (i==l,.. .,10) i Class- 

1 2     3     4     5     6     7 8     9 10 ification 
subtotals 

1 6 4     2     0     4     3     5 9     6 8 47 

1 p 2 4 8     4     2     111 6     2 1 30 

1   : 3 2 3     2     8     4     8     2 1     1 2 33 

*03      ? 4 1 0     3     2     0     0     0 2     4 8 20 
g  ^ 5 0 2     6     7     18     3 5     4 4 40 
S   11 6 3 7     5     3     5     2    4 3     2 6 40 

7 2 17     2     6     11 6    4 3 33 

j Classifica 
subtotal 

tion 
s 18 25   29   24   21   23   16 32   23 32 243 

Examples: 

a:i.3 = 2 íTT.S = 6               0^3.7 = 2               íTé.T = 0 

7      10 

EU'" = (íCi.i + a^i.a + . . . + ^1.10 + í»2.1 + 3^2.2 
+ . . . + aÍT.lo) 

= (6 +4+... +8+ 4+ 8+ ...+3) 
= 243 

3       3 
=   (a;2.1 + í^,2 + «^2,3 + ÍC3,1 + 3^3,2 + ^3,3) 

^ (4 _|_ 8.+4 + 2 + 3 + 2) = 23 

2       4 

i=l 3=3 
=   (Xl,s' + X,,^ + «^2.3^ + X2.é^) 

i=2   V=3        / 

=   (22 4- 02 + 42 + 22)  =: 24 

= (a;2.3 + X2A)^+ (0^3.3 + 0:3.4)' 

= (4 + 2)2+ (2 + 8)2 = 136 

79 
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(6        9 \ 2 
S   S Xij ) =   (íCs.S + ÍC5,9 + XQ,8 + XQ,íí)^ 
i=5 3=8       / 

=   (5 4-4 + 3 + 2)2r=:196 

s X3J = (X3,i + a;3,2 + ... + XB,IO) 

= (2 4- 3 + ... + 2) == 33 

S aîie^ = (32 + 12 + 82 4-... + 12) = 143 

(s..)^ 

», Í 

= 292 ^ g4i 

S Xii = 243 

7 

S Xi2Xis = (a;i.2) (aîi.s) + (0:2,2) (0:2.3) 
'-^ + •.. + (2:7.2) (0:7.3) 

=: (4) (2) + (8) (4) + ... + (1) (7) = 100 

S (0:5/ — x^i) = (0:5.1 — 0:4.1) + (0:5,2 — 0:4,2) 
' + ... + (0:5.10 — 0:4.10) 

= Í S 0:5;—S 0:4/j 

= (40 - 20) = 20 

S(o:5i-o:4;)2 = (0-1)2 4.(2-0)2+ (6-3)2 
+ ...+ (4-8)2 

= 138 

S 0:5/ -S 0:4/ ==   (02 4- 22 4- ... 4- 42)  -   (12 4. 02 
^ i +... + 82) = 122 

(s 0:5/)' - (s 0:4/)' = (402 - 202) 

= 1,200 

S (0:5/ — 0:4;) =   S 0:5/ — S 0:4/ 

= [40-20]2 = 400 
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= 3(a;2.i) +3(0:2.2) + ... + 3(0:2,10) 

= 3(o;2,i + o;2,2 + ...+ 0^2,10) 

= 3 (^X2Í\=S(S0) =:90 

S (x^j - 6) = (0:4.1 - 6) + (0:4 2 - 6) 
+ ... + (0:4.10 - 6) 

= (Xé,l + 0:4,2 + ... + 0:4.10) 
-6-6-...-6 

= íso:4i) -10(6) 

= (20 - 60) = -40 



TABLES 

TABLE 1.—Ten thov^and randomly assorted digits 

54463 
15389 
85941 
61149 
05219 

41417 
28857 
17783 
40960 

96754 
84357 
06818 
62111 
47534 

98614 
24856 
96887 
90801 
65166 

75884 
16777 
46230 
42902 
81007 

85205 
40756 
69440 
81619 

94070 
00015 

87403 
62820 
09243 

75993 
08648 
12479 
21472 
77812 

12952 
87116 
48877 

10-14 15-19 

66905 

18850 
82414 
11286 
10651 

87719 
20652 
10806 
29881 
66164 

68864 
49927 
07248 
67879 

84460 
44898 
80621 
42816 

84S18 
58660 

85966 
41180 

44105 
71726 
57715 
79931 
00544 

09351 
66223 
77408 

95108 
42968 
88877 
01432 

20-24 25-29 30-84 

13858 
58925 
92511 

46614 
16249 
91630 
62800 
10089 

47861 
45690 
50423 
89292 
23410 

59844 
98795 
86085 
37390 
28420 

72305 
21460 
89380 
94710 
10154 

67382 
90669 
78030 

50948 
75019 
36466 

67372 
84767 

12740 

14922 
18644 
78286 
76766 
70219 

23474 
95425 

29085 
96325 
16269 
52862 
84502 

64886 
21145 
39981 
84740 
78258 

86679 
60332 
63116 
85693 
02540 

48730 
39766 
02432 
62616 

91318 
01175 
91380 
20423 

23248 
65978 
62733 
72095 

20002 
05217 
62481 

73947 
54440 

78448 
71068 
63342 
32141 
41943 

89872 
87894 
03164 
60137 
19774 

01385 
33451 
83463 

97365 
47286 
49177 
77379 

53249 
90600 
21605 

48167 
90368 
42846 
80268 
47366 

45375 
81378 

08186 
26927 
15345 
77455 
75577 

30976 
76305 
75779 
90279 
37231 

27083 
71113 
80182 
11661 
13491 

84770 
44104 
94771 
18106 
41067 

85436 
10620 
69337 
18119 
49087 

59391 
99567 
10363 
86859 
11258 

96068 
54463 
16874 
92494 
15669 

99116 
15696 
97720 
11666 
71628 

40501 
22618 
75112 

57430 
73528 
25991 

55-59 60-64 

76364 
97518 
19558 
24591 

47237 
62677 
63157 
56689 

75486 
10703 
16369 
13841 
73130 

51089 
65576 
30485 
02671 
45648 

52098 
77204 

51400 
64432 

35911 
73800 
57412 
76593 
35682 

65178 
51269 
71681 
78783 

98215 
62173 
98191 
02146 

10421 
34434 
70769 
09134 
96667 

82718 
04615 
25670 
16706 
55368 

14530 
91017 
13215 
91316 
40844 

23476 
90637 

02132 
84342 
05597 

05540 
88596 
64721 

70-74 75-79 

87024 
27062 
98342 
99612 
31721 

31389 
03505 
53256 

52967 
63110 
03388 
35979 
41632 

41995 
10798 
14878 
90813 

43648 
64086 
86413 

82848 
96621 
61891 
59798 
94335 

80428 
71824 
62233 
72389 
81872 

67104 
17622 
13699 
39719 
09847 

49268 
81366 

75888 
71693 
33475 
48472 

> 

84 85-89 90-94 95-99 

04190 
43918 
27101 
32803 

39936 
83671 
80827 
96363 
35213 

39495 
53988 
33423 

73631 
36684 
22281 
95441 
34598 

66049 
43132 
42740 
39318 
24696 

96574 
01896 
37855 
67708 
02566 

31855 
39892 
73917 
52887 

0S840 

39100 
71087 
67453 
07449 
18707 

69361 
67466 
16783 
15496 
72856 

21511 
14414 
06175 
35434 
77515 

90464 
83991 
06235 
15297 
80972 

34334 
60518 
82802 
01087 

34471 

17217 
84148 
43269 
47985 
85489 

06375 

20168 
66762 

47676 
79949 
82758 
24057 
09577 

This table is reproduced, by permission of the author and publishers, from table 1.5.1 of Snedecor's StcUistical Methods (5th ed.), Iowa State University Press. 



TABLE 1.—Ten thousand randomly assorted digits (continued) 

00-04   05-09   10-14   15-19   20-24   25-29   30-34   35-39   40-44   45-^9   50-54   55-59   60-64   65-69   70-74   75-79   80-84   85-89   90-94 

20411 
58212 
70577 
94522 

42626 
16051 
08244 
59497 
97155 

98409 
45476 
89300 
50051 
31753 

79152 
44560 

83544 

91621 
91896 
55751 
85156 
07521 

01122 
67081 
13160 

27647 
04392 
13428 

66162 
84882 
69700 
95137 
85178 

38750 
83378 
38689 
86141 

00881 
67126 
62515 
87689 

51111 

89950 
06468 
24969 
71659 

85651 
57194 
33851 
09419 
40293 

95763 
65109 
50741 
91631 
31310 

77250 
83635 

15707 

04900 
04151 
21108 
95493 
12236 

72373 
16944 
15718 
61210 
62038 

88678 
16752 
44705 
89964 
09985 

47420 
96597 
30329 
66315 
89642 

20190 
56540 
71381 

54224 
03795 

82627 
76046 

79643 

17401 
54450 
94211 
51211 
58434 

20792 
25930 
11658 
91428 

56535 
64900 
39564 
30459 

46177 
59077 
02263 
00664 
39102 

74373 
87687 
76999 
67699 
79169 

03252 
19031 
46716 
04894 
01412 

61527 
66790 
23166 
12275 
02306 

18760 
42912 
05615 

55017 
62315 

42054 
44741 

99547 
58580 
11738 
72882 
69124 

20441 
65706 
05400 
24816 
24617 

69942 
13953 
42451 
20781 
08467 

17852 
12630 
37204 
55539 
12239 

97017 
87236 
68680 
12696 
05437 

32404 
47629 
55784 
17805 
82171 

39435 

77448 
79149 
64559 

27491 
98375 

17771 
07105 

41273 
77054 
96739 
93758 
39038 

17918 
54132 
95374 
21896 
59058 

11859 
53634 
48708 
71710 

33278 
18710 
97501 
26333 
93842 

89415 
52068 
30506 
69448 
11844 

60631 
72655 

41567 
22557 
03887 
33258 
22716 

48805 
68618 
65747 
91777 
55349 

23466 
60142 
09808 
87530 
01117 

83266 
76970 
37074 
83712 
20287 

74261 
64081 
05617 
26793 

27366 
56760 

77888 
28440 

16738 
59348 

12900 
75086 
99495 
26075 
13636 

65198 
06514 
56862 

32592 
49863 
75818 
74951 
72850 

42271 
10909 
43338 
38100 
07819 

94441 
93410 
45030 
60159 
11695 

71775 
23537 
61484 
31671 

44785 
30101 
69727 

86538 
08478 
47760 
95466 
48737 

44300 
98147 

21580 

77033 
16369 
96279 
07425 
45761 

29845 
49939 
29181 
45386 
23377 

15679 
39516 
68624 
78295 
94443 

27041 
96001 
67814 
74307 
54719 

73399 
34736 
58904 
58103 
51459 

12147 
89033 
14709 
62369 
15865 

60774 

38155 
79152 

54656 
64936 

69543 
47961 
47971 

52372 
07515 
74739 

94924 
13484 
38190 
93459 
95126 

29793 
74798 
84481 
85417 

86532 
14810 
10526 
42664 
01596 

95256 
23943 
83841 

49955 
47231 
87832 
82721 
05672 

21810 
97588 
42563 
48599 
61496 

97610 
43189 
27227 

07571 
70545 
66192 
85515 
03845 

73467 
12731 
11231 
25878 

02736 
37875 

66990 
09054 
78735 
60048 
06158 

89755 
44464 

23746 
29226 

31776 
50803 
71153 
20271 

38636 33717 67698 

52022 
42474 

16255 
73579 
46703 
72781 

39286 
59064 
27058 
05497 
03134 

05192 
50771 
65938 
55903 
23608 

96071 
05383 
72744 
21315 
65128 

52125 
41330 
45141 

91077 
60651 

17777 
92359 
98265 

72606 
59566 

65340 
07210 
40467 
33625 
70322 

48657 
83665 
81581 
44115 
15873 

05813 
39902 
88208 
00132 
14551 

82521 
35234 
40197 
91321 
42338 

This table is reproduced, by permission of the author and publishers, from table 1.5,1 of Snedecor's Statistical Methods {5th ed.), Iowa State University Press. 



TABLE 1.—Ten thoiisand randomly assorted digits (continued) 

00-04   05-09   10-14   15-19   20-24   25-29   30-34   35-39   40-44   46-49   50-54   55-59   60-64   65-69   70-74   75-79   80-84   85-89   90-94   95-99        g 

05845 
74897 
20872 

48194 
11303 
54374 

42587 
40177 

79788 
40538 
64016 
49767 
76974 

68978 
S6444 

63664 
44249 
00512 
68373 

54570 

96156 
61605 
57790 
87118 
67826 

34421 
20384 
37065 
98690 
76128 

68248 
79000 
73598 
12691 
66108 

08480 
70551 
98600 
87800 07391 
26188 86647 

39662 
04050 
78630 
67369 
36017 

89177 
01240 
79970 
81471 
16947 

61046 
09491 
24526 
97161 

18609 
17903 
29795 

40646 
48174 
66328 
51014 
88132 

75641 
00660 
33106 

90849 
91588 
72602 

73150 
93871 
08404 

96026 
78088 
14971 
11694 

97306 

65570 
18116 
33510 
25730 

81355 
05873 
86904 
08665 
78371 

97720 
57689 
84633 
24141 

27084 
42274 
62463 
99721 
82684 

60177 
98573 
25325 
21196 
04558 

31741 
44072 

13568 
48119 

98131 
67588 
04838 

14748 
23489 
33102 
79109 
00497 

64610 
79848 
00427 
00781 
61463 

07294 
40192 
91705 
17056 
86723 

77243 
76082 
52503 
49416 
97191 

30376 
37292 
62036 
40254 

17620 
34602 
46206 
09426 
61126 

99425 
31778 
62073 
32660 
67842 

84149 
51153 

72506 
91691 

79172 
24130 
44448 
63798 

21753 
76970 
05967 
49967 

96401 
76608 
87440 
26904 
79936 

29656 
64280 
67158 

46797 
11397 

42607 
67913 

96767 
07419 
67450 

61446 
18847 

82487 
58212 
67071 
64600 
77212 

93448 
21627 
27029 
27928 

10608 
36894 
61946 

67042 
76013 
66671 

21641 
23037 
24768 
73041 
24210 

32847 
16916 
66176 
46299 
22847 

41851 
28444 
47520 
34978 
37404 

82400 

90814 
19192 

77685 
23757 
46989 
92970 
74346 

87646 
50099 
10127 
67995 
26304 

31282 
00041 
84047 
13385 
47839 

54160 
59497 
62378 
63271 
80416 

09127 
14833 
82756 

52593 
16364 
96257 
94243 
59596 

41309 
71038 
46900 
81977 
80217 

21005 
12180 
45386 

91586 
98856 
13142 

52099 
51718 
98021 
08759 
20563 

56612 
05096 
23860 
07316 
40088 

27636 
45146 
64984 
18984 
84934 

27137 
16861 

95917 
83174 

70663 
03871 
74645 
68446 

95766 
03192 
26216 
41467 
98176 

45153 
06146 
76348 
64091 
82667 

69214 
14253 
03191 
38043 
47526 

34803 
68553 
13088 
05271 
49486 

74648 
11623 
27789 
05046 
65376 

10019 
62386 
23309 
64837 
17896 

65211 
04115 
02785 

70381 
76582 
48970 
69292 
54098 

92479 
28639 
16561 

58444 
94066 
88914 

21526 
52406 

94770 
99429 
33624 
27762 
35397 

78286 
12092 
64625 
62675 
45683 

06466 
68559 
06490 
76610 

66095 

79820 
44832 

73064 
85332 
07426 

07255 
43169 
68774 

55849 

71160 
34174 
26679 
44984 
74976 

69597 
73002 
86606 
65091 
26119 

18877 
50264 
61553 
77753 

66259 
60013 
97144 
36104 

91018 
92426 

64777 
11130 

49307 
70066 

63623 

55710 
19456 
31220 
19099 

06340 
97786 
35515 
80407 
08187 

16742 

37655 
79085 
78195 

83378 
91994 
51254 
62717 
15478 

71551 
03591 
30180 
73040 
43816 

58136 
96459 
29315 
14032 
48885 

99761 
59180 
62556 
64524 
48109 

This table is reproduced, by permission of the author and publishers, from table 1.5.1 of Snedecor's Statistical Methods (5th ed.), Iowa State University Press. 



TABLE 1.—Ten thousand randomly assorted digits (continued) 

00-04   05-09   10-14   15-19   20-24   25-29   30-34 135-39   40-44   45^9   50-54   55-59   60-64   65-69   70-74   75-79   80-84   85-89   90-94   95-99 

64437 
91714 
20902 
12217 

45177 
28325 
29019 
84979 
50371 

53422 
67453 
07294 
79544 
64144 

95  90919 
06670 
36634 
75101 
05112 

55809 
19843 
51564 
99566 
S1890 

65162 
32242 
53662 
17646 
86007 

02863 
90814 
28776 
81353 

06825 
35651 
86353 
00302 
85442 

11883 
57353 
93976 
72891 
71222 

47982 
69122 
38040 
14742 
95712 

32245 
48431 
28373 
31391 
70371 

42307 
08804 
66116 
56219 
48513 

69711 
89816 
74819 
45338 

58318 
86275 
52062 
85745 
72654 

41968 
42502 
39418 
05028 
08279 

82279 
04835 
34333 
81459 
52281 

63571 
52746 
64791 
67062 

67950 
41620 
23446 
16015 
46471 

00042 
92276 
83678 
67106 
51583 

49915 
30033 
91794 

79256 
39070 
55791 
33816 
14510 

47913 
64604 
26146 
11158 

64716 
32048 
68237 
66613 
24162 

62402 
77591 
41256 
26010 
05228 

19000 
94889 
94068 

69702 
74768 
03444 
76094 

74921 
54577 
08815 
82567 
25563 

70225 
07202 
88968 
39500 

28210 
46924 
60948 
62107 
62056 

58050 
53381 
49337 

81508 
51144 
55743 
96679 

17735 
47525 
46049 

49581 
47597 
99515 
14695 
87351 

34075 
60839 
18685 
60885 
57390 

91486 
72998 

28666 
88674 

18827 
74701 
54863 

42201 
77705 
71186 
14124 
18431 

46378 
33137 

33272 
56437 
48992 
37503 
42746 

19180 
99942 
79952 
75787 
35355 

56705 
22390 
10704 
58861 
78339 

80540 
95330 
34650 
46240 
92978 

99878 
31443 
53809 
77716 
42833 

00840 
03183 
19462 
55461 
39272 

15100 
10515 
67849 

06118 
62246 

54721 
21866 
14994 
92973 
11591 

61130 
51445 
26685 
79696 
71875 

73268 
13191 
96062 
71213 

81994 
59537 
51228 

18682 
63571 

68927 
56401 
24333 
17025 
02804 

31121 
97867 

63873 
35531 

41070 
34662 
10937 
87995 
97938 

81142 
56134 
74530 
81038 
32679 

56492 

84202 
08253 

03879 
01785 
06682 
47266 
56641 

86746 
26263 
55571 
19162 

56642 
79631 

09474 
67582 
38004 

07661 
68416 

00608 
86406 
25695 

64091 
89403 
81460 
07828 
75174 

89712 
92557 
90102 
90915 
25371 

72942 
62272 

19850 
96062 
91837 
02051 
17577 

14621 

31229 
66212 
47831 
42272 
79460 

68153 

77642 
31356 
46287 

73090 
03785 
74021 
67599 
80161 

49430 
75999 
91332 
77511 
80721 

09975 
91403 
54016 
55436 

33452 
90257 

16175 
50865 

89094 
24471 
87320 

22311 
44540 
63956 
24311 
16197 

13513 
06118 
95007 
21950 
67206 

42212 
05134 
05500 
91588 
98475 

91853 
97036 
08452 
97577 

74087 
57257 
78742 

45148 
86197 
06047 
86192 
87644 

06140 

80744 
76884 

08424 
32341 
62862 
99304 
22343 

82244 
64896 
64158 

72492 
10918 
69008 

16846 
99046 
21296 

42694 
27612 
62700 
07716 
37635 

81450 

41587 
55111 

79614 
71402 

49872 
79846 
47493 
77656 
97528 

S0144 
16162 
64809 

43325 
12648 

73757 
71775 

99121 
30030 
78235 
76287 
41915 

44103 
54809 
99681 
05941 
45447 

This table is reproduced, by permission of the author and publishers, from table 1.5.1 of Snedecor's Statiètical Methods (5th ed.), Iowa State University Press. 
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TABLE 2.—The distribution of t 

df 
Probability 

.5 .4 .3 .2 .1 .05 .02 ,01 .001 

1.-.. 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.619 
2..-. .816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.598 
3.... .765 .978 1.250 1.638 2.353 3.182 4.541 5.841 12.941 
4.... .741 .941 1.190 1.533 2.132 2.776 3.747 4.604 8.610 
5.... .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 6.859 

6.... .718 .906 1.134 1.440 1.943 2.447 3.143 3.707 5.959 
7.— .711 .896 1.119 1.415 1.895 2.365 2.998 3.499 5.405 
8...- .706 .889 1.108 1.397 1.860 2.306 2.896 3.355 5.041 
9..-. .703 .883 1.100 1.383 1.833 2.262 2.821 3.250 4.781 

10.... .700 .879 1.093 1.372 1.812 2.228 2.764 3.169 4.587 

11.... .697 .876 1.088 1.363 1.796 2.201 2.718 3.106 4.437 
12.... .695 .873 1.083 1.356 1.782 2.179 2.681 3.055 4.318 
13.... .694 .870 1.079 1.350 1.771 2.160 2.650 3.012 4.221 
14.... .692 .868 1.076 1.345 1.761 2.145 2.624 2.977 4.140 
15.... .691 .866 1.074 1.341 1.753 2.131 2.602 2.947 4.073 

16.... .690 .865 1.071 1.337 1.746 2.120 2.583 2.921 4.015 
17.... .689 .863 1.069 1.333 1.740 2.110 2.567 2.898 3.965 
18.-.. .688 .862 1.067 1.330 1.734 2.101 2.552 2.878 3.922 
19.... .688 .861 1.066 1.328 1.729 2.093 2.539 2.861 3.883 
20.... .687 .860 1.064 1.325 1.725 2.086 2.528 2.845 3.850 

21.... .686 .859 1.063 1.323 1.721 2.080 2.518 2.831 3.819 
22.-.. .686 .858 1.061 1.321 1.717 2.074 2.508 2.819 3.792 
23.... .685 .858 1.060 1.319 1.714 2.069 2.500 2.807 3.767 
24.... .685 .857 1.059 1.318 1.711 2.064 2.492 2.797 3.745 
25-.-. .684 .856 1.058 1.316 1.708 2.060 2.485 2.787 3.725 

26.... .684 .856 1.058 1.315 1.706 2.056 2.479 2.779 3.707 
27.... .684 .855 1.057 1.314 1.703 2.052 2.473 2.771 3.690 
28.... .683 .855 1.056 1.313 1.701 2.048 2.467 2.763 3.674 
29.... .683 .854 1.055 1.311 1.699 2.045 2.462 2.756 3.659 
30.... .683 .854 1.055 1.310 1.697 2.042 2.457 2.750 3.646 

40-... .681 .851 1.050 1.303 1.684 2.021 2.423 2.704 3.551 
60.... .679 .848 1.046 1.296 1.671 2.000 2.390 2.660 3.460 

120.... .677 .845 1.041 1.289 1.658 1.980 2.358 2.617 3.373 
00 -. .674 .842 1.036 1.282 1.645 1.960 2.326 2.576 3.291 

This table is abridged from table III of Fisher and Yates' Statistical Tables 
for Biological, Agricultural, and Medical Research, Oliver and Boyd Ltd., 
Edinburgh. Permission has been given by the authors and publishers. 
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TABLE 3.—Confidence intervals for binominal distribution 

95-percent interval 

Number 
observed 

(/) 
Size of sample, n 

Fraction 
observed 

fin 

Size of sample 

10 15 20 80 60 100 250 1000 

0 0  31 
0  45 
3  56 
7  65 

12  74 
19  81 
26  88 
35  93 
44  97 
55 100 
69 100 

0 
0 
2 
4 
8 
12 
16 
21 
27 
32 
38 
45 
52 
60 
68 
78 

22 
32 
40 
48 
65 
62 
68 
73 
79 
84 
88 
92 
.96 
98 
100 
100 

0 
0 
1 
8 
6 
9 
12 
15 
19 
23 
27 
32 
36 
41 
46 
51 
56 
62 
69 
75 
83 

17 
25 
81 
38 
44 
49 
64 
69 
64 
68 
73 
77 
81 
85 
88 
91 
94 
97 
99 
100 
100 

0 
0 
1 
2 
4 
6 
8 

10 
12 
15 
17 
20 
23 
25 
28 
31 
34 
37 
40 
44 
47 
50 
54 
57 
61 
65 
69 
73 
78 
83 
88 

12 
17 
22 
27 
81 
35 
39 
43 
46 
60 
63 
66 
60 
63 
66 
69 
72 
75 
77 
80 
88 
85 
88 
90 
92 
94 
96 
98 
99 
100 
100 

0 

18 
20 
21 
23 
25 
27 
28 
30 
32 
34 
36 
37 
39 
41 
43 
45 
47 
50 
52 
54 
56 
57 
59 
62 
64 
66 
69 
71 
73 
76 
78 
81 
83 
86 
89 
93 

07 
11 
14 
17 
19 
22 
24 
27 
29 
31 
34 
86 
38 
41 
43 
44 
46 
48 
60 
63 
56 
67 
59 
61 
63 
64 
66 
68 
70 
72 
73 
75 
77 
79 
80 
82 
84 
85 
87 
88 
90 

91 
98 
94 
95 
97 
98 
99 

100 
100 
100 

0 
0 
0 
1 

1 
2 
2 
8 
4 
4 
5 
6 
6 
7 
8 
9 
9 
10 
11 
12 
13 
14 
14 
15 
16 
17 
18 
19 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

4 
5 
7 
8 

10 

11 
12 
14 
16 
16 
18 
19 
20 
21 
22 
24 
25 
26 
27 
28 
29 
80 
31 
32 
83 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
60 
61 
52 
63 
54 
65 
56 
57 
58 
59 
60 

0.00 
.01 
.02 
.03 
.04 
.05 
.06 
.07 
.08 
.09 
.10 
.11 
.12 
.13 
.14 
.15 
.16 
.17 
.18 
.19 
.20 
.21 

:S 
.24 
.25 
.26 
.27 
.28 
.29 
.30 
.31 
.32 
.88 
.34 
.35 
.86 
.37 
.38 
.39 
.40 
.41 
.42 
.43 
.44 
.45 
.46 
.47 
.48 
.49 
.50 

0 
0 
1 
1 
2 
3 
3 

t 
6 
7 
7 
8 
9 
10 
10 
11 
12 
13 
14 
16 
16 
17 
18 
19 
20 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

1 
4 
5 
6 
7 
9 
10 
11 
12 
13 
14 
16 
17 
18 
19 
20 
21 
22 
23 
24 
26 
27 
28 
29 
30 
31 
82 
33 
84 
86 
36 
37 
38 
39 
40 
41 
42 
43 
44 
46 
46 
47 
48 
49 
60 
51 
62 
63 
54 
55 
56 

0 
0 
1 
2 
3 
4 
5 
6 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
19 
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
87 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

0 
1 2 
2 3 

3   4 

4  5 

5   7 

6 8 

7 9 

8 10 

9  11 

10-   12 

11.._  13 

12    14 

13 15 

14 16 

15 17 

16 18 

17 19 

18 21 

19 22 

20  23 

21 24 

22   - -.. 25 

23 26 

24 27 

25 28 

26 29 

27 30 

28 31 

29 32 

30 33 

31 34 

82 35 

83 36 

34 37 

35 38 

36 39 

37 
40 

38 
41 

39 
42 

40 
43 

41 
44 

42 
45 

43 
46 

44 
47 

45 
48 

46 
49 

47 
50 

48 
51 

49 
62 

50 
53 

1 
This table is reoroduced, by permission of the author and publishers, from table 1.3.1 of 
This table ^|^^JP¿°°;Í3^«^¿,¿¿jg„j Methods (ed. 5), Iowa-State Umversity Press. 
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TABLE 3.—Confidence intervals for binominal distribution 
(continued) 

Number 
observed 

(/) 

)-percent interval 

s of sample, n 

13 
19 
26 
35 
46    100 
59    100 

99 
100 
100 

99 S 
100 3 
100 3 
100 3 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
62 
53 
54 
55 
66 
57 
58 
59 
60 
61 

Fraction 
observed 

fin 

0.00 
.01 
.02 

Size of sample 

0 
0 
1 
1 

.04 

.06 2 
3 
3 
4 
6 

.10 

.11 

.12 

.13 

.14 

.16 

.16 

.17 

.18 

.19 

.40 

.41 

.42 

.43 

.44 

.45 

.46 

.47 

.48 

.49 

.60 

3 
4 
6 
6 
7 
8 
9 
9 
10 
11 
12 
13 
14 20 
16  21 
16 22 
17 23 
18 24 
19 26 

2 21 
3 22 

31 
24  32 

65 4 
56 4 
57 4 
58 46 

}44 
7 46 
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TABLE 4.—Arcsin transformation (angles corresponding to per- 
centages , angle = arcsin ^/percentage) 

% 0 1 2 3 4 5 6 7 8 9 

0.0  0 0.57 0.81 0.99 1.15 1.28 1.40 1.52 1.62 1.72 
0.1  1.81 1.90 1.99 2.07 2.14 2.22 2.29 2.36 2.43 2.50 
0.2  2.56 2.63 2.69 2.75 2.81 2.87 2.92 2.98 3.03 3.09 
0.3  3.14 3.19 3.24 3.29 3.34 3.39 3.44 3.49 3.53 3.58 
0.4  3.63 3.67 3.72 3.76 3.80 3.85 3.89 3.93 3.97 4.01 

0.5 4.05 4.09 4.13 4.17 4.21 4.25 4.29 4.33 4.37 4.40 
0.6  4.44 4.48 4.52 4.55 4.59 4.62 4.66 4.69 4.73 4.76 
0.7  4.80 4.83 4.87 4.90 4.93 4.97 5.00 5.03 5.07 5.10 
0.8 5.13 5.16 5.20 5.23 5.26 5.29 5.32 5.35 5.38 5.41 
0.9  5.44 5.47 5.50 5.53 5.56 5.59 5.62 5.65 5.68 5.71 

1 ... 5.74 6.02 6.29 6.55 6.80 7.04 7.27 7.49 7.71 7.92 
2 8.13 

9.98 
8.33 

1,0.14 
8.53 

10.31 
8.72 

10.47 
8.91 

10.63 
9.10 

10.78 
9.28 

10.94 
9.46 

11.09 
9.63 

11.24 
9.81 

3  11.39 
4  11.54 11.68 11.83 11.97 12.11 12.25 12.39 12.52 12.66 12.79 

5  12.92 13.05 13.18 13.31 13.44 13.56 13.69 13.81 13.94 14.06 
6  14.18 

15.34 
14.30 
15.45 

14.42 
15.56 

14.54 
15.68 

14.65 
15.79 

14.77 
15.89 

14.89 
16.00 

15.00 
16.11 

15.12 
16.22 

15.23 
7  16.32 
8 16.43 16.54 16.64 16.74 16.85 16.95 17.05 17.16 17.26 17.36 
9  17.46 17.56 17.66 17.76 17.85 17.95 18.05 18.15 18.24 18.34 

10 18.44 18.53 18.63 18.72 18.81 18.91 19.00 19.09 19.19 19.28 
11 19.37 19.46 19.55 19.64 19.73 19.82 19.91 20.00 20.09 20.18 
12..  20.27 20.36 20.44 20.53 20.62 20.70 20.79 20.88 20.96 21.05 
13  21.13 21.22 21.30 21.39 21.47 21.56 21.64 21.72 21.81 21.89 
14  21.97 22.06 22.14 22.22 22.30 22.38 22.46 22.55 22.63 22.71 

15  22.79 22.87 22.95 23.03 23.11 23.19 23.26 23.34 23.42 23.50 
16  23.58 23.66 23.73 23.81 23.89 28.97 24.04 24.12 24.20 24.27 
17 . 24.35 24.43 24.50 24.58 24.65 24.73 24.80 24.88 24.95 25.03 
18 25.10 25.18 25.25 25.33 25.40 25.48 25.55 25.62 25.70 25.77 
19  25.84 25.92 25.99 26.06 26.13 26.21 26.28 26.35 26.42 26.49 

20  26.56 26.64 26.71 26.78 26.85 26.92 26.99 27.06 27.13 27.20 
21 27.28 27.35 27.42 27.49 27.56 27.63 27.69 27.76 27.83 27.90 
22 27.97 28.04 28.11 28.18 28.25 28.32 28.38 28.45 28.52 28.59 
23  28.66 28.73 28.79 28.86 28.93 29.00 29.06 29.13 29.20 29.27 
24  29.33 29.40 29.47 29.53 29.60 29.67 29.73 29.80 29.87 29.93 

25 30.00 30.07 30.13 30.20 30.26 30.33 30.40 30.46 30.53 30.59 
26  30.66 30.72 30.79 30.85 30.92 30.98 31.05 31.11 31.18 31.24 
27  31.31 31.37 31.44 31.50 31.56 31.63 31.69 31.76 31.82 31.88 
28 31.95 32.01 32.08 32.14 32.20 32.27 32.33 32.39 32.46 32.52 
29  32.58 32.65 32.71 32.77 32.83 32.90 32.96 33.02 33.09 33.15 

30     .. 33.21 33.27 33.34 33.40 33.46 33.52 33.58 33.65 33.71 33.77 
31 33.83 33.89 33.96 34.02 34.08 34.14 34.20 34.27 34.33 34.39 
32 34.45 34.51 34.57 34.63 34.70 34.76 34.82 34.88 34.94 35.00 
33 35.06 35.12 35.18 35.24 35.30 35.37 35.43 35.49 35.55 35.61 
34  35.67 

36.27 
35.73 
36.33 

35.79 
36.39 

35.85 
36.45 

35.91 
36.51 

35.97 
36.57 

36.03 
36.63 

36.09 
36.69 

36.15 
36.75 

36.21 

35 36.81 
36 36.87 36.93 36.99 37.05 37.11 37.17 37.23 37.29 37.35 37.41 

37 37.47 37.52 37.58 37.64 37.70 37.76 37.82 37.88 37.94 38.00 
38 38.06 38.12 38.17 38.23 38.29 38.35 38.41 38.47 38.53 38.59 

39..  38.65 38.70 38.76 38.82 38.88 38.94 39.00 39.06 39.11 39.17 

40  39.23 
39 82 

39.29 
39.87 

39.35 
39.93 

39.41 
39.99 

39.47 
40.05 

39.52 
40.11 

39.58 
40.16 

39.64 
40.22 

39.70 
40.28 

39.76 
40.34 41 

42  
43  
44  

40 40 40.46 40.51 40.57 40.63 40.69 40.74 40.80 40.86 40.92 
40.98 41.03 41.09 41.15 41.21 41.27 41.32 41.38 41.44 41.50 
41.55 41.61 41.67 41.73 41.78 41.84 41.90 41.96 42.02 42.07 
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TABLE 4.—Arcsin transformation (angles corresponding to per- 
centages, angle = arcsin ^percentage)   (continued) 

45-. 
46.. 
47.. 
48... 
49... 
50... 
51... 
52... 
53... 
54... 
55... 
56... 
57... 
58... 
59... 
60... 
61... 
62... 
63... 
64... 
65... 

67.... 
68.... 
69.... 
70.... 
71.... 
72.... 
73.... 
74.... 
75.... 
76.... 
77.... 
78.... 
79.... 
80.... 
81.... 
82.... 
83...., 
84..... 
85  
86..... 
87  
88  
89  
90.. 
91.. 
92.. 
93.. 
94.. 
95.. 
96.. 
97.. 

0 

42.13 
42.71 
43.28 
43.85 
44.43 
45.00 
45.57 
46.15 
46.72 
47.29 
47.87 
48.45 
49.02 
49.60 
50.18 
50.77 
51.35 
51.94 
52.53 
53.13 
53.73 
54.33 
54.94 
55.55 
56.17 
56.79 
57.42 
58.05 
58.69 
59.34 
60.00 
60.67 
61.34 
62.03 
62.72 
63.44 
64.16 
64.90 
65.65 
66.42 
67.21 
68.03 
68.87 
69.73 
70.63 
71.56 
72.54 
73.57 
74.66 
75.82 
77.08 
78.46 
80.02 
81.87 

42.19 
42.76 
43.34 
43.91 
44.48 
45.06 
45.63 
46.20 
46.78 
47.35 
47.93 
48.50 
49.08 
49.66 
50.24 
50.83 
51.41 
52.00 
52.59 
53.19 
53.79 
54.39 
55.00 
55.61 
56.23 
56.85 
57.48 
58.12 
58.76 
59.41 
60.07 
60.73 
61.41 
62.10 
62.80 
63.51 
64.23 
64.97 
65.73 
66.50 
67.29 
68.11 
68.95 
69.82 
70.72 
71.66 I 
72.64 
73.68 
74.77 
75.94 

42.25 
42.82 
43.39 
43.97 
44.54 
45.11 
45.69 
46.26 
46.83 
47.41 
47.98 
48.56 
49.14 
49.72 
50.30 
50.89 
51.47 
52.06 
52.65 
53.25 
53.85 
54.45 
55.06 
55.67 
56.29 
56.91 
57.54 
58.18 
58.82 
59.47 
60.13 
60.80 
61.48 
62.17 
62.87 
63.58 
64.30 
65.05 
65.80 
66.58 
67.37 
68.19 
69.04 
69.91 
70.81 
71.76 
72.74 
73.78 
74.88 
76.06 

42.30 
42.88 
43.45 
44.03 
44.60 
45.17 
45.75 
46.32 
46.89 
47.47 
48.04 
48.62 
49.20 
49.78 
50.36 
50.94 
51.53 
52.12 
52.71 
53.31 
53.91 
54.51 
55.12 
55.73 
56.35 
56.98 
57.61 
58.24 
58.89 
59.54 
60.20 
60.87 
61.55 
62.24 
62.94 
63.65 
64.38 
65.12 
65.88 
66.66 
67.45 
68.28 
69.12 
70.001 
70.91 
71.85 
72.84 
73.89 
75.00 
76.19 

77.21 
78.61 

77.34   77.48 
78.76   78.91 

42.36 
42.94 
43.51 
44.08 
44.66 
45.23 
45.80 
46.38 
46.95 
47.52 
48.10 
48.68 
49.26 
49.84 
50.42 
51.00 
51.59 
52.18 
52.77 
53.37 
53.97 
54.57 
55.18 
55.80 
56.42 
57.04 
57.67 
58.31 
58.95 
59.60 
60.27 
60.94 
61.62 
62.31 
63.01 
63.72 
64.45 
65.20 
65.96 
66.74 
67.54 
68.36 
69.21 
70.09 
71.00 

42.42 
42.99 
43.57 
44.14 
44.71 

71.95 
72.95 
74.00 
75.11 
76.31 
77.61 
79.06 

45.29 
45.86 
46.43 
47.01 
47.58 
48.16 
48.73 
49.31 
49.89 
50.48 
51.06 
51.65 
52.24 
52.83 
53.43 
54.03 
54.63 
55.24 
55.86 
56.48 
57.10 
57.73 
58.37 
59.02 
59.67 
60.33 
61.00 
61.68 
62.37 
63.08 
63.79 
64.52 
65.27 
66.03 
66.81 
67.62 
68.44 
69.30 
70.18 
71.09 
72.05 
73.05 
74.11 
75.23 
76.44 

6 

42.48 
43.05 
43.62 
44.20 
44.77 
45.34 
45.92 
46.49 
47.06 
47.64 
48.22 
48.79 
49.37 
49.95 
50.53 
51.12 
51.71 
52.30 
52.89 
53.49 
54.09 
54.70 
55.30 
55.92 
56.54 
57.17 
57.80 
58.44 
59.08 
59.74 
60.40 
61.07 
61.75 
62.44 
63.15 
63.87 
64.60 
65.35 
66.11 
66.89 
67.70 
68.53 
69.38 
70.27 
71.19 
72.15 
73.15 
74.21 
75.35 
76.56 

42.53 
43.11 
43.68 
44.25 
44.83 
45.40 
45.97 
46.55 
47.12 
47.70 
48.27 
48.85 
49.43 
50.01 
50.59 
51.18 
51.77 
52.36 
52.95 
53.55 
54.15 
54.76 
55.37 
55.98 
56.60 
57.23 
57.86 
58.50 
59.15 
59.80 
60.47 
61.14 
61.82 
62.51 
63.22 
63.94 
64.67 
65.42 
66.19 
66.97 
67.78 
68.61 
69.47 
70.36 
71.28 

8 

42.59 
43.17 
43.74 
44.31 
44.89 
45.46 
46.03 
46.61 
47.18 
47.75 
48.33 
48.91 
49.49 
50.07 
50.65 
51.24 
51.83 
52.42 
53.01 
53.61 
54.21 
54.82 
55.43 
56.04 
56.66 
57.29 
57.92 
58.56 
59.21 
59.87 
60.53 
61.21 
61.89 
62.58 
63.29 
64.01 
64.75 
65.50 
66.27 
67.05 

9 

72.24 
73.26 
74.32 
75.46 
76.69 

67.86 
68.70 
69.56 
70.45 
71.37 
72.34 
73.36 
74.44 

42.65 
43.22 
43.80 
44.37 
44.94 
45.52 
46.09 
46.66 
47.24 
47.81 
48.39 
48.97 
49.54 
50.13 
50.71 
51.30 
51.88 
52.48 
53.07 
53.67 
54.27 
54.88 
55.49 
56.11 
56.73 
57.35 
57.99 
58.63 
59.28 
59.93 
60.60 
61.27 
61.96 
62.65 
63.36 
64.08 
64.82 
65.57 
66.34 
67.13 
67.94 
68.78 
69.64 
70.54 
71.47 
72.44 
73.46 
74.55 

77.75 
79.22 

80.19   80.37   80.54   80.72   80.90 

77.89 
79.37 
81.09 

78.03 
79.53 
81.28 

82.08   82.29   82.51   82.73   82.96   83.20   83.45 

75.58 75.70 
76.82 76.95 
78.17 78.32 
79.69 79.86 
81.47 81.67 
83.71 83.98 
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TABLE 4.—Arcsin transformation (angles corresponding to per- 
centages, angle = arcsin ^/percentage)   (continued) 

% 0 1 2 3 4 5 6 7 8 9 

99.0  
99.1  
99.2  
99.3  
99.4  
99.5  
99.6  
99.7  
99.8  
99.9  

100.0  

84.26 
84.56 
84.87 
85.20 
85.56 
85.95 
86.37 
86.86 
87.44 
88.19 
90.00 

84.29 
84.59 
84.90 
85.24 
85.60 
85.99 
86.42 
86.91 
87.50 
88.28 

84.32 
84.62 
84.93 
85.27 
85.63 
86.03 
86.47 
86.97 
87.57 
88.38 

84.35 
84.65 
84.97 
85.31 
85.67 
86.07 
86.51 
87.02 
87.64 
88.48 

84.38 
84.68 
85.00 
85.34 
85.71 
86.11 
86.56 
87.08 
87.71 
88.60 

84.41 
84.71 
85.03 
85.38 
85.75 
86.15 
86.61 
87.13 
87.78 
88.72 

84.44 
84.74 
85.07 
85.41 
85.79 
86.20 
86.66 
87.19 
87.86 
88.85 

84.47 
84.77 
85.10 
85.45 
85.83 
86.24 
86.71 
87.25 
87.93 
89.01 

84.50 
84.80 
85.13 
85.48 
85.87 
86.28 
86.76 
87.31 
88.01 
89.19 

84.53 
84.84 
85.17 
85.52 
85.91 
86.33 
86.81 
87.37 
88.10 
89.43 

This table is reproduced, by permission of the author and publishers, from 
table 11.12.1 of Snedecor's Statistical Methods (ed. 5), Iowa State University 
Press. Permission has also been granted by the original author, Dr. C. I. Bliss, 
of the Connecticut Agricultural Experiment Station. 
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